An intermediate neglect of differential overlap theory for transition metal complexes: Fe, Co and Cu chlorides

A complete Intermediate Neglect of Differential Overlap model suitable for the examination of transition metal complexes is described. The model is characterized by the inclusion of all the one-center exchange terms necessary for rotational invariance and accurate spectroscopic predictions, as well as an accurate description of integrals involving 3d atomic orbitals. The model is within the unrestricted Hartree-Fock formalism, and a method for spin purification is described. Problems with convergence of the self-consistent field are discussed, and a method that has been found successful in aiding the convergence is outlined.The model has been applied to many transition metal systems. In this article the results of calculations on the chlorides of Fe, Co and Cu are described. The results of these calculations are compared with experiment, and with the results of calculations by other methods.

[1]  L. C. Snyder,et al.  Unrestricted Hartree—Fock Calculations. I. An Improved Method of Computing Spin Properties , 1964 .

[2]  W. Lugt Molecular-orbital calculations on transition metal complexes, charge-transfer spectra and the sequence of metal and ligand orbitals , 1972 .

[3]  U. Wahlgren,et al.  Bonding, spectra, and geometry of the tetrachlorocuprate ion CuCl42-. Ab initio LCAO-MO-SCF calculation , 1973 .

[4]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .

[5]  G. G. Hall The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  G. G. Hall,et al.  Single determinant wave functions , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  P Pieter Ros,et al.  Molecular Orbital Calculations on Copper Chloride Complexes , 1966 .

[8]  J. A. Mcginnety Cesium tetrachlorocuprate. Structure, crystal forces, and charge distribution , 1972 .

[9]  R. Willett Crystal Structure of (NH4)2CuCl4 , 1964 .

[10]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[11]  R. S. Mulliken Quelques aspects de la théorie des orbitales moléculaires , 1949 .

[12]  E. Clementi Analytical Hartree—Fock Functions. IV. Isoelectronic Series for 31 to 36 Electrons and Conclusions , 1964 .

[13]  J. Hinze,et al.  Slater—Condon Parameters from Spectral Data , 1963 .

[14]  G. Segal,et al.  Approximate Self‐Consistent Molecular Orbital Theory. IV. Calculations on Molecules Including the Elements Sodium through Chlorine , 1967 .

[15]  Michael C. Zerner,et al.  Removal of core orbitals in ‘valence orbital only’ calculations , 1972 .

[16]  H. Teruya,et al.  Systematic Determination of the Slater Parameters for the First Transition Elements , 1970 .

[17]  M. Zerner,et al.  Simple molecular orbital treatment of diatomic force constants , 1978 .

[18]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[19]  W. Lipscomb,et al.  Molecular Orbital Theory of Spectra of Cr3+ Ions in Crystals , 1963 .

[20]  William F. Meggers,et al.  Quantum Theory of Atomic Structure , 1960 .

[21]  M. Zerner,et al.  Determination of one‐centre core integrals from the average energies of atomic configurations , 1973 .

[22]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[23]  Michael C. Zerner,et al.  Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines , 1976 .

[24]  R. Parr,et al.  Discontinuous approximate molecular electronic wave‐functions , 1977 .

[25]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[26]  Louis Noodleman The determination of optical absorption intensities using the Xα scattered wave method , 1976 .

[27]  J. C. Slater Atomic Shielding Constants , 1930 .

[28]  P. Geerlings,et al.  Rotational invariance of INDO theories including d‐orbitals into the basis set , 1977 .

[29]  M. Zerner,et al.  Porphyrins: IV. Extended Hckel calculations on transition metal complexes , 1966 .

[30]  Michael J. S. Dewar,et al.  Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method , 1975 .

[31]  J. Linderberg,et al.  Matrix elements in all valence electron models , 1974 .

[32]  Michael B. Hall,et al.  Electronic structure and bonding in methyl- and perfluoromethyl(pentacarbonyl)manganese , 1972 .

[33]  W. Nieuwpoort,et al.  APPROXIMATE RADIAL FUNCTIONS FOR FIRST-ROW TRANSITION METAL ATOMS AND IONS , 1962 .

[34]  W. Nieuwpoort,et al.  Approximate Radial Functions for First‐Row Transition‐Metal Atoms and Ions. II. 4p and 4d Atomic Orbitals , 1963 .

[35]  M. Zerner,et al.  Porphyrins: VIII. Extended Hckel calculations on iron complexes , 1966 .

[36]  Potential energy integrals in semiempirical MO methods , 1974 .

[37]  R. Harlow,et al.  Crystal structures of the green and yellow thermochromic modifications of bis(N-Methylphenethylammonium) tetrachlorocuprate (II). Discrete square-planar and flattened tetrahedral tetrachlorocuprate(2-)anions , 1974 .

[38]  Alain Sérafini,et al.  Une extension de la méthode CNDO/2 à l'étude des complexes d'éléments de transition , 1975 .

[39]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[40]  F. Cotton Chemical Applications of Group Theory , 1971 .

[41]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines , 1973 .

[42]  J. C. Slater Statistical Exchange-Correlation in the Self-Consistent Field , 1972 .

[43]  H. Jaffe,et al.  Use of the CNDO Method in Spectroscopy. I. Benzene, Pyridine, and the Diazines , 1968 .

[44]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions , 1963 .

[45]  R. Kruh,et al.  The Crystal Structure of Cesium Chlorocuprate, Cs2CuCl4, and the Spectrum of the Chlorocuprate Ion , 1952 .

[46]  R. E. Watson Iron series Hartree-Fock calculations , 1960 .

[47]  D. W. Clack INDO MO calculations for first row transition metal complexes , 1974 .

[48]  A. Veillard,et al.  AB inioio calculation of the electronic structure of the CuCl2-4 ion , 1970 .

[49]  C. E. Moore Circular of the Bureau of Standards no. 467 , 1949 .

[50]  A. D. McLean,et al.  Computational methods for large molecules and localized states in solids : proceedings of a symposium, held May 15-17, 1972, at the IBM Research Laboratory, San Jose, California , 1973 .

[51]  N. Gregory,et al.  The Crystal Structure of Sodium Tetrachloroferrate(III) , 1965 .

[52]  B. N. Figgis,et al.  Introduction to Ligand Fields , 1966 .

[53]  A. Hudson,et al.  Applications of the INDO method to some radicals containing second row elements , 1971 .

[54]  R. Harlow,et al.  Crystal and molecular structure of bis[(+)-N,.alpha.-dimethylphenethylammonium] tetrachlorocuprate(II). Relation between the electronic spectrum and the distortion of the tetrachlorocuprate chromophore from tetrahedral symmetry , 1975 .

[55]  J. Pople,et al.  Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .

[56]  G. Burns ATOMIC SHIELDING PARAMETERS , 1964 .