Graphic Lambda Calculus

We introduce and study graphic lambda calculus, a visual language which can be used for representing untyped lambda calculus, but it can also be used for computations in emergent algebras or for representing Reidemeister moves of locally planar tangle diagrams.

[1]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[2]  M. Polyak Minimal generating sets of Reidemeister moves , 2009, 0908.3127.

[3]  L. G. Meredith,et al.  Knots as processes: a new kind of invariant , 2010, ArXiv.

[4]  Marius Buliga $λ$-Scale, a lambda calculus for spaces with dilations , 2012, ArXiv.

[5]  Richard Hall,et al.  Programming with visual expressions , 1995, Proceedings of Symposium on Visual Languages.

[6]  Dilatation structures I. Fundamentals , 2006, math/0608536.

[7]  Marius Buliga Computing with space: a tangle formalism for chora and difference , 2011, ArXiv.

[8]  Helge Glockner Contractible Lie groups over local fields , 2007, 0704.3737.

[9]  Martin Erwig,et al.  Abstract Syntax and Semantics of Visual Languages , 1998, J. Vis. Lang. Comput..

[10]  David Joyce,et al.  A classifying invariant of knots, the knot quandle , 1982 .

[11]  Eberhard Siebert Contractive automorphisms on locally compact groups , 1986 .

[12]  Roger Fenn,et al.  RACKS AND LINKS IN CODIMENSION TWO , 1992 .

[13]  The algebra of knotted trivalent graphs and Turaev's shadow world , 2003, math/0311458.

[14]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[15]  J. Koenderink The brain a geometry engine , 1990, Psychological research.

[16]  Braided spaces with dilations and sub-riemannian symmetric spaces , 2010, 1005.5031.

[17]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .