A Survey of Weighted Polynomial Approximation with Exponential Weights

Let W : R → (0,1] be continuous. Bernstein’s approximation problem, posed in 1924, deals with approximation by polynomials in the weighted uniform norm f → k fW k L1(R). The qualitative form of this problem was solved by Achieser, Mergelyan, and Pollard, in the 1950’s. Quantitative forms of the problem were actively investigated starting from the 1960’s. We survey old and recent aspects of this topic, including the Bernstein problem, weighted Jackson and Bernstein Theorems, Markov–Bernstein and Nikolskii inequalities, orthogonal expansions and Lagrange interpolation. We present the main ideas used in many of the proofs, and different techniques of proof, though not the full proofs. The class of weights we consider is typically even, and supported on the whole real line, so we exclude Laguerre type weights on [0, ∞). Nor do we discuss Saff’s weighted approximation problem, nor the asymptotics of orthogonal polynomials.

[1]  S. Bernstein,et al.  La problème de l'approximation des fonctions continues sur tout l'axe réel et l'une de ses applications , 1924 .

[2]  On the Convergence Properties of Lagrange Interpolation Based on the Zeros of Orthogonal Tchebycheff Polynomials , 1937 .

[3]  Harry Pollard,et al.  The mean convergence of orthogonal series. II , 1948 .

[4]  H. Pollard The mean convergence of orthogonal series. III , 1949 .

[5]  L. Carleson On Berstein’s approximation problem , 1951 .

[6]  W. Rudin,et al.  Mean convergence of orthogonal series , 1952 .

[7]  Harry Pollard,et al.  SOLUTION OF BERNSTEIN'S APPROXIMATION PROBLEM' , 1953 .

[8]  H. Pollard The Bernstein approximation problem , 1955 .

[9]  The Bernstein problem , 1959 .

[10]  Richard Askey,et al.  Mean convergence of expansions in Laguerre and Hermite series , 1965 .

[11]  P. Heywood Trigonometric Series , 1968, Nature.

[12]  B. Muckenhoupt,et al.  Mean convergence of Hermite and Laguerre series. II , 1970 .

[13]  Géza Freud,et al.  Orthogonal Polynomials , 1971, Series and Products in the Development of Mathematics.

[14]  B. A. Taylor On weighted polynomial approximation of entire functions , 1971 .

[15]  Harold S. Shapiro,et al.  Topics in Approximation Theory , 1971 .

[16]  Richard Askey,et al.  Mean convergence of orthogonal series and Lagrange interpolation , 1972 .

[17]  Géza Freud Extension of the Dirichlet-Jordan criterion to a general class of orthogonal polynomial expansions , 1974 .

[18]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[19]  G. P. Névai,et al.  Mean convergence of Lagrange interpolation, II☆ , 1976 .

[20]  F. Calogero On the zeros of hermite polynomials , 1977 .

[21]  G. Freud On Markov-Bernstein-type inequalities and their applications , 1977 .

[22]  Sur L'Approximation Polynomiale Avec Poids exp(-|x|) , 1978, Canadian Journal of Mathematics.

[23]  D. Wulbert The Rational Approximation of Real Functions , 1978 .

[24]  H. Mhaskar Weighted polynomial approximation of entire functions, I , 1981 .

[25]  A note on mean convergence of Lagrange interpolation , 1981 .

[26]  H. Mhaskar,et al.  K-functionals and moduli of continuity in weighted polynomial approximation , 1983 .

[27]  A general approach to approximation problems of the Bernstein type , 1983 .

[28]  The Bernstein Problem , 1984 .

[29]  H. Mhaskar On the domain of convergence of series in polynomials orthogonal with respect to general weight functions on the whole real line , 1984 .

[30]  Hrushikesh Narhar Mhaskar,et al.  Extremal problems for polynomials with exponential weights , 1984 .

[31]  E. Rakhmanov,et al.  ON ASYMPTOTIC PROPERTIES OF POLYNOMIALS ORTHOGONAL ON THE REAL AXIS , 1984 .

[32]  Hrushikesh Narhar Mhaskar,et al.  Where does the sup norm of a weighted polynomial live? , 1985 .

[33]  Paul Neval,et al.  Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .

[34]  Paul Koosis,et al.  The Logarithmic Integral , 1986 .

[35]  D. Lubinsky Gaussian quadrature, weights on the whole real line and even entire functions with nonnegative even order derivatives , 1986 .

[36]  V. Totik,et al.  Weighted polynomial inequalities , 1986 .

[37]  C. Bennett,et al.  Interpolation of operators , 1987 .

[38]  Polynomial approximation with exponential weights , 1987 .

[39]  V. Totik,et al.  Moduli of smoothness , 1987 .

[40]  Sharp Nikolskii inequalities with exponential weights , 1987 .

[41]  Quadrature sums involving p th powers of polynomials , 1987 .

[42]  D. Lubinsky,et al.  Canonical products and the weights exp(-vxv α ), α<1, with applications , 1987 .

[43]  A. Levin,et al.  Weights on the real line that admit good relative polynomial approximation, with applications , 1987 .

[44]  Where does the ^{}-norm of a weighted polynomial live? , 1987 .

[45]  The rate of convergence of expansions on freud polynomials , 1988 .

[46]  A quantitative Dirichlet-Jordan type theorem for orthogonal polynomial expansions , 1988 .

[47]  Edward B. Saff,et al.  Strong Asymptotics for Extremal Polynomials Associated With Weights on Ir , 1988 .

[48]  L ∞ Markov and Bernstein inequalities for Freud weights , 1990 .

[49]  General Markov-Bernstein and Nikolskii type inequalities , 1990 .

[50]  Finite-infinite range inequalities in the complex plane , 1991 .

[51]  Mean convergence of expansions in Freud-type orthogonal polynomials , 1991 .

[52]  H. Mhaskar,et al.  Hermite interpolation at the zeros of certain freud-type orthogonal polynomials , 1992 .

[53]  A. L. Levin,et al.  Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[54]  H. König,et al.  Vector-valued L p -convergence of orthogonal series and Lagrange interpolation , 1992, math/9208201.

[55]  Polynomial approximation inLp (0 , 1992 .

[56]  Doron S. Lubinsky,et al.  Erratum: Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[57]  D. Lubinsky,et al.  Hermite and Hermite-Fejer Interpolation and Associated Product Integration Rules on the Real Line: The L 1 Theory , 1992, Canadian Journal of Mathematics.

[58]  D. Lubinsky,et al.  Hermite and Hermite-Feje´r interpolation and associated product integration rules on the real line: the L ∞ theory , 1992 .

[59]  Vector-valued Lagrange interpolation and mean convergence of Hermite series , 1992 .

[60]  S. Thangavelu Lectures on Hermite and Laguerre expansions , 1993 .

[61]  B. Y. Levin Completeness of systems of functions, quasianalyticity and subharmonic majorants , 1993 .

[62]  H. N. Mhaskar Weighted Polynomial Approximation of Entire Functions on Unbounded Subsets of the Complex Plane , 1993, Canadian Mathematical Bulletin.

[63]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[64]  Gradimir V. Milovanovic,et al.  Topics in polynomials - extremal problems, inequalities, zeros , 1994 .

[65]  Pointwise convergence of Hermite-Fejér interpolation of higher order for Freud weights , 1994 .

[66]  A. L. Levin,et al.  Lp Markov-Bernstein Inequalities for Freud Weights , 1994 .

[67]  D. M. Matjila Bounds for Lebesgue Functions for Freud Weights , 1994 .

[68]  Convergence of Lagrange Interpolation for Freud Weights in Weighted L p (ℝ), 0 , 1994 .

[69]  Weighted polynomial approximation on the real line , 1995 .

[70]  P. Borwein,et al.  Polynomials and Polynomial Inequalities , 1995 .

[71]  Convergence of the Derivatives of Hermite-Fejér Interpolation Polynomials of Higher Order Based at the Zeros of Freud Polynomials , 1995 .

[72]  Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Freud weights , 1995 .

[73]  Z. Ditzian,et al.  Moduli of smoothness andK-functionals inLp, 0 , 1995 .

[74]  D. M. Matjila Bounds for the weighted Lebesgue functions for Freud weights on a larger interval , 1995 .

[75]  D. Lubinsky,et al.  Full quadrature sums for p th powers of polynomials with Freud weights , 1995 .

[76]  D. Lubinsky,et al.  Necessary and sufficient conditions for mean convergence of orthogonal expansions for Freud weights , 1995 .

[77]  Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Erdős Weights , 1996, Canadian Journal of Mathematics.

[78]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[79]  M. Sodin Which perturbations of quasianalytic weights preserve quasianalyticity? How to use de Branges’ theorem , 1996 .

[80]  Hrushikesh Narhar Mhaskar,et al.  Introduction to the theory of weighted polynomial approximation , 1997, Series in approximations and decompositions.

[81]  Doron S. Lubinsky,et al.  Forward and Converse Theorems of Polynomial Approximation for Exponential Weights on [-1,1], II , 1997 .

[82]  J. Szabados,et al.  Weighted Lagrange and Hermite–Fejér interpolation on the real line , 1997 .

[83]  Doron S. Lubinsky,et al.  Jackson and smoothness theorems for freud weights , 1997 .

[84]  Z. Ditzian,et al.  Jackson and Smoothness Theorems for Freud Weights in L p (0 < p ≤ ∞) , 1997 .

[85]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[86]  The Lebesgue Function and Lebesgue Constant of Lagrange Interpolation for Erdoős Weights , 1998 .

[87]  Péter Vértesi On the Lebesgue function of weighted Lagrange interpolation. II , 1998 .

[88]  Doron S. Lubinsky,et al.  Mean Convergence of Lagrange Interpolation for Exponential weights on [-1, 1] , 1998, Canadian Journal of Mathematics.

[89]  Doron S. Lubinsky,et al.  Marcinkiewicz-Zygmund Inequalities: Methods and Results , 1998 .

[90]  Lagrange Interpolation Based at the Zeros of Orthonormal Polynomials with Freud Weights , 1998 .

[91]  Convergence of Modified Lagrange Interpolation toLp-Functions Based on the Zeros of Orthonormal Polynomials with Freud Weights , 1998 .

[92]  Sundaram Thangavelu,et al.  Hermite and special Hermite expansions revisited , 1998 .

[93]  Steven B. Damelin The Weighted Lebesgue Constant of Lagrange Interpolation for Exponential Weights on [-1, 1] , 1998 .

[94]  On mean convergence of Hermite–Fejér and Hermite interpolation for Erdős weights , 1998 .

[95]  Mean convergence of Hermite-Feje´r and Hermite interpolation for Freud weights , 1998 .

[96]  M. Sodin,et al.  The Hamburger moment problem and weighted polynomial approximation on discrete subsets of the real line , 1998 .

[97]  Polynomial Approximation and Interpolation on the Real Line with Respect to General Classes of Weights , 1998 .

[98]  Converse and Smoothness Theorems for Erdős Weights inL_(0 , 1998 .

[99]  A characterization of smoothess for Freud weights , 1998 .

[100]  V. E. S. Szabó,et al.  Weighted Interpolation: the L∞ Theory. I , 1999 .

[101]  Mean Convergence of Extended Lagrange Interpolation with Freud Weights , 1999 .

[102]  P. Vértesi On the Lebesgue Function of Weighted Lagrange Interpolation. I. (Freud-Type Weights) , 1999 .

[103]  Mean convergence of orthogonal series for Erdos weight , 1999 .

[104]  Doron S. Lubinsky,et al.  On Converse Marcinkiewicz—Zygmund Inequalities in Lp,p>1 , 1999 .

[105]  T. Kriecherbauer,et al.  Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .

[106]  Smoothness theorems for Erdos weightes, II , 1999 .

[107]  Regular Article: Uniform or Mean Convergence of Hermite–Fejér Interpolation of Higher Order for Freud Weights , 1999 .

[108]  S. Damelin Smoothness theorems for generalized symmetric Pollaczek , 1999 .

[109]  D. Lubinsky,et al.  (C, 1) Means of Orthonormal Expansions for Exponential Weights , 2000 .

[110]  Where Are the Nodes of “Good” Interpolation Polynomials on the Real Line? , 2000 .

[111]  Krein's entire functions and the Bernstein approximation problem , 2000, math/0007008.

[112]  Vladimir Rovenski,et al.  Interpolation of Functions , 2000 .

[113]  Steven B. Damelin,et al.  Convergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights , 2001, J. Approx. Theory.

[114]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[115]  T. Gamelin,et al.  The Logarithmic Integral , 2001 .

[116]  A note on mean convergence of Lagrange interpolation in Lp(0 , 2001 .

[117]  Bounds for weighted Lebesgue functions for exponential weights , 2001 .

[118]  Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights , 2001 .

[119]  Partially one-sided polynomial approxi- mation on the real line , 2001 .

[120]  G. Mastroianni,et al.  Lagrange Interpolation at Laguerre Zeros in Some Weighted Uniform Spaces , 2001 .

[121]  On the closure of polynomials in weighted spaces of functions on the real line , 2001 .

[122]  Inequalities for Polynomials With Weights Having Infinitely many Zeros on the Real Line , 2002 .

[123]  József Szabados,et al.  Polynomial approximation on infinite intervals with weights having inner zeros , 2002 .

[124]  Mhaskar-Prestin operators for Freud weights , 2002 .

[125]  CONVERSE MARCINKIEWICZ-ZYGMUND INEQUALITIES ON THE REAL LINE WITH APPLICATION TO MEAN CONVERGENCE OF LAGRANGE INTERPOLATION , 2002 .

[126]  D. Lubinsky,et al.  L p boundedness of (C, 1) means of orthonormal expansions for general exponential weights , 2002 .

[127]  Bounds for weighted Lebesgue functions for exponential weights. II , 2002 .

[128]  Doron S. Lubinsky,et al.  On Weighted Mean Convergence of Lagrange Interpolation for General Arrays , 2002, J. Approx. Theory.

[129]  THE ASYMPTOTIC DISTRIBUTION OF GENERAL INTERPOLATION ARRAYS FOR EXPONENTIAL WEIGHTS , 2002 .

[130]  Converse Quadrature sum Inequalities for Freud Weights. ii , 2002 .

[131]  R. Sakai,et al.  Orthonormal polynomials with generalized Freud-type weights , 2003, J. Approx. Theory.

[132]  H. S. Jung Linfin convergence of interpolation and associated product integration for exponential weights , 2003, J. Approx. Theory.

[133]  P. Vértesi,et al.  On summability of weighted Lagrange interpolation. I , 2004 .

[134]  Mean Convergence of Extended Lagrange Interpolation for Exponential Weights , 2003 .

[135]  Steven B. Damelin Marcinkiewicz-Zygmund inequalities and the numerical approximation of singular integrals for exponential weights: methods, results and open problems, some new, some old , 2003, J. Complex..

[136]  On the Difference of Orthonormal Polynomials , 2003 .

[137]  D. Lubinsky,et al.  Quadrature sums and Lagrange interpolation for general exponential weights , 2003 .

[138]  Péter Vértesi,et al.  An Erdős type convergence process in weighted interpolation. II , 2003 .

[139]  Hrushikesh Narhar Mhaskar,et al.  A tribute to Géza Freud , 2004, J. Approx. Theory.

[140]  José M. Rodríguez,et al.  Weierstrass' theorem with weights , 2004, J. Approx. Theory.

[141]  On summability of weighted Lagrange interpolation. III , 2004 .

[142]  R. Sakai,et al.  Orthonormal polynomials for generalized Freud-type weights and higher-order Hermite-Feje'r interpolation polynomials , 2004, J. Approx. Theory.

[144]  Extension of the Dirichlet-Jordan Convergence Criterion for Exponential Weights , 2004 .

[145]  H. S. Jung Necessary conditions of convergence of Hermite-Fejér interpolation polynomials for exponential weights , 2005, J. Approx. Theory.

[146]  Zeev Ditzian,et al.  Ul'yanov and Nikol'skii-type inequalities , 2005, J. Approx. Theory.

[147]  Zhiqiang Gao,et al.  The generalized Bernstein problem on weighted Lacunary polynomial approximation , 2005, J. Approx. Theory.

[148]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[149]  D. Lubinsky,et al.  Which weights on ℝ admit Jackson Theorems?admit Jackson Theorems? , 2006 .

[150]  D. Lubinsky Jackson and Bernstein theorems for the weight exp(−|x|) on ℝ , 2006 .

[151]  József Szabados,et al.  Direct and Converse Polynomial Approximation Theorems on the Real Line with Weights Having Zeros , 2006 .

[152]  Yamilet Quintana,et al.  A survey on the Weierstrass approximation theorem , 2006, math/0611038.

[153]  Péter Vértesi,et al.  Classical (Unweighted) and Weighted Interpolation , 2006 .

[154]  S. P.J. Gaussian Quadrature , 2006 .

[155]  M. G. Russo,et al.  The Lp-weighted Lagrange interpolation on Markov--Sonin zeros , 2006 .

[156]  Yamilet Quintana On Hilbert extensions of Weierstrass' theorem with weights , 2006, math/0611034.

[157]  Ana Portilla,et al.  Weierstrass's Theorem in Weighted Sobolev Spaces With $k$ Derivatives , 2007 .

[158]  Nataniel Greene Fourier series of orthogonal polynomials , 2008 .

[159]  G. Milovanović,et al.  Interpolation Processes: Basic Theory and Applications , 2008 .

[160]  D. Lubinsky,et al.  Which Weights on $\r$ Admit $L_p$ Jackson Theorems? , 2009 .

[161]  G. Mastroianni,et al.  POLYNOMIAL INEQUALITIES, FUNCTIONAL SPACES AND BEST APPROXIMATION ON THE REAL SEMIAXIS WITH LAGUERRE WEIGHTS.∗ , 2022 .