Viral Fusion Peptides: A Tool Set to Disrupt and Connect Biological Membranes

[1]  L. Tamm,et al.  pH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers. , 2000, Journal of molecular biology.

[2]  L. Tamm,et al.  A host-guest system to study structure-function relationships of membrane fusion peptides. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. T. Armstrong,et al.  The Transmembrane Domain of Influenza Hemagglutinin Exhibits a Stringent Length Requirement to Support the Hemifusion to Fusion Transition , 2000, The Journal of cell biology.

[4]  S. Lindquist,et al.  Nucleated conformational conversion and the replication of conformational information by a prion determinant. , 2000, Science.

[5]  S. Peisajovich,et al.  The polar region consecutive to the HIV fusion peptide participates in membrane fusion. , 2000, Biochemistry.

[6]  S. Tatulian,et al.  Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. , 2000, Biochemistry.

[7]  D. Steinhauer,et al.  Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: probing the role of hydrophobic residue size in the central region of the fusion peptide. , 1999, Biochemistry.

[8]  R. Doms,et al.  Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. , 1999, Biochemistry.

[9]  J. Skehel,et al.  N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  F S Cohen,et al.  A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. , 1999, Molecular biology of the cell.

[11]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[12]  R. Epand Lipid polymorphism and protein-lipid interactions. , 1998, Biochimica et biophysica acta.

[13]  L. Tamm,et al.  pH‐Induced conformational changes of membrane‐bound influenza hemagglutinin and its effect on target lipid bilayers , 1998, Protein science : a publication of the Protein Society.

[14]  R. Epand,et al.  Modulation of lipid polymorphism by the feline leukemia virus fusion peptide: implications for the fusion mechanism. , 1998, Biochemistry.

[15]  R. Epand,et al.  The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. , 1997, Biophysical journal.

[16]  S. Tatulian,et al.  Infrared spectroscopy of proteins and peptides in lipid bilayers , 1997, Quarterly Reviews of Biophysics.

[17]  F. Goñi,et al.  Permeabilization and fusion of uncharged lipid vesicles induced by the HIV-1 fusion peptide adopting an extended conformation: dose and sequence effects. , 1997, Biophysical journal.

[18]  L. Tamm,et al.  Structural studies on membrane‐embedded influenza hemagglutinin and its fragments , 1997, Protein science : a publication of the Protein Society.

[19]  R. Epand,et al.  Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayers. , 1997, Biochemistry.

[20]  Y. Shai,et al.  Fusion Peptides Derived from the HIV Type 1 Glycoprotein 41 Associate within Phospholipid Membranes and Inhibit Cell-Cell Fusion , 1997, The Journal of Biological Chemistry.

[21]  Y. Shin,et al.  The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. , 1997, Journal of molecular biology.

[22]  S. Durell,et al.  Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events , 1996, The Journal of cell biology.

[23]  Thompson Te,et al.  Design of membrane-inserting peptides: spectroscopic characterization with and without lipid bilayers. , 1996 .

[24]  T. Vorherr,et al.  H+-induced Membrane Insertion of Influenza Virus Hemagglutinin Involves the HA2 Amino-terminal Fusion Peptide but Not the Coiled Coil Region* , 1996, The Journal of Biological Chemistry.

[25]  C. Gray,et al.  Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. , 1996, Biophysical journal.

[26]  S. Pelletier,et al.  Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers , 1996, The Journal of cell biology.

[27]  J. Ruysschaert,et al.  Structural study of the interaction between the SIV fusion peptide and model membranes. , 1996, Biochemistry.

[28]  J. Ruysschaert,et al.  Lipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined by its orientation in the lipid bilayer , 1996, Journal of virology.

[29]  J. Ruysschaert,et al.  Structure and Topology of the Influenza Virus Fusion Peptide in Lipid Bilayers (*) , 1995, The Journal of Biological Chemistry.

[30]  S. Tatulian,et al.  Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. , 1995, The EMBO journal.

[31]  F. Goñi,et al.  Liposome destabilization induced by the HIV‐1 fusion peptide Effect of a single amino acid substitution , 1995, FEBS letters.

[32]  J. Skehel,et al.  Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation. , 1995, The EMBO journal.

[33]  J. Ruysschaert,et al.  Membrane orientation of the SIV fusion peptide determines its effect on bilayer stability and ability to promote membrane fusion. , 1994, Biochemical and biophysical research communications.

[34]  J. Seelig,et al.  Binding of apolipoprotein A-I model peptides to lipid bilayers. Measurement of binding isotherms and peptide-lipid headgroup interactions. , 1994, The Journal of biological chemistry.

[35]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[36]  R. Epand,et al.  Relationship between the infectivity of influenza virus and the ability of its fusion peptide to perturb bilayers. , 1994, Biochemical and biophysical research communications.

[37]  C. Deber,et al.  Erratum: A measure of helical propensity for amino acids in membrane environments , 1994, Nature Structural Biology.

[38]  D. Siegel,et al.  Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. , 1993, Biophysical journal.

[39]  S. Takahashi,et al.  Orientation of fusion-active synthetic peptides in phospholipid bilayers: determination by Fourier transform infrared spectroscopy. , 1993, Biochemistry.

[40]  P. S. Kim,et al.  A spring-loaded mechanism for the conformational change of influenza hemagglutinin , 1993, Cell.

[41]  R. Brasseur,et al.  Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. , 1993, Biochimica et biophysica acta.

[42]  V A Parsegian,et al.  Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. , 1992, Biophysical journal.

[43]  T. McIntosh,et al.  Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. , 1992, Biochemistry.

[44]  R. Brasseur,et al.  Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins. , 1990, Biochimica et biophysica acta.

[45]  W. DeGrado,et al.  Phospholipid interactions of synthetic peptides representing the N-terminus of HIV gp41. , 1990, Biochemistry.

[46]  S. Takahashi Conformation of membrane fusion-active 20-residue peptides with or without lipid bilayers. Implication of alpha-helix formation for membrane fusion. , 1990, Biochemistry.

[47]  J. Israelachvili,et al.  Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. , 1989, Science.

[48]  S. Gruner Stability of lyotropic phases with curved interfaces , 1989 .

[49]  S. Hui,et al.  Effects of lipid packing on polymorphic phase behavior and membrane properties. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[50]  I. Wilson,et al.  Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin , 1987, The Journal of cell biology.

[51]  S. Gruner Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[52]  L. J. Lis,et al.  Interactions between neutral phospholipid bilayer membranes. , 1982, Biophysical journal.

[53]  I. Wilson,et al.  Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[54]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[55]  P. Y. Chou,et al.  Empirical predictions of protein conformation. , 1978, Annual review of biochemistry.