Qualitative criteria for dynamic buckling of imperfection sensitive nonconservative systems

A qualitative dynamic buckling analysis of imperfection-sensitive non-conservative dissipative systems under path-dependent loading in regions of divergence is presented. Despite the lack of potential for this type of loading a total energy-balance equation allows us to establish a sufficient criterion for dynamic buckling, the counterpart of that valid for potential systems. Moreover, using energy and geometrical considerations for the channel of motion, one can obtain for a 2-DOF model dynamic buckling loads (DBLs) which are practically exact for vanishing but non-zero damping and very accurate for non-zero damping. Numerical results show the efficiency and reliability of the proposed qualitative analysis.

[1]  W. Schmitendorf,et al.  A Simple Test for Asymptotic Stability in Partially Dissipative Symmetric Systems , 1973 .

[2]  Raymond H. Plaut Postbuckling Analysis of Nonconservative Elastic Systems , 1976 .

[3]  H. H. E. Leipholz,et al.  Stability Theory: An Introduction to the Stability of Dynamic Systems and Rigid Bodies , 1987 .

[4]  H. Ziegler,et al.  Die Stabilitätskriterien der Elastomechanik , 1952 .

[5]  Daniel J. Inman,et al.  Dynamics of Asymmetric Nonconservative Systems , 1983 .

[6]  A. Kounadis,et al.  On the large postbuckling response of nonconservative continuous systems , 1992 .

[7]  A. Kounadis On the reliability of postbuckling analyses for nonconservative imperfect systems , 1991 .

[8]  A. N. Kounadis,et al.  Local (Classical) And Global Bifurcations In Non-linear, Non-gradient Autonomous Dissipative Structural Systems , 1993 .

[9]  Anthony N. Kounadis,et al.  On the reliability of classical divergence instability analyses of Ziegler's nonconservative model , 1992 .

[10]  Anthony N. Kounadis,et al.  On the paradox of the destabilizing effect of damping in non-conservative systems , 1992 .

[11]  A. Kounadis,et al.  Non-conservative systems with symmetrizable stiffness matrices exhibiting limit cycles , 1997 .

[12]  J. Mandel,et al.  Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques , 1973 .

[13]  V. V. Bolotin,et al.  Nonconservative problems of the theory of elastic stability , 1963 .

[14]  A. Kounadis A qualitative analysis for the local and global dynamic buckling and stability of autonomous discrete systems , 1994 .

[15]  A. Kounadis Nonlinear Stability and Dynamic Buckling of Autonomous Dissipative Systems , 1995 .

[16]  Anthony N. Kounadis,et al.  Non-potential dissipative systems exhibiting periodic attractors in regions of divergence , 1997 .

[17]  A. N. Kounadis Stability of Elastically Restrained Timoshenko Cantilevers With Attached Masses Subjected to a Follower Force , 1977 .

[18]  A. Kounadis,et al.  Energy-based dynamic buckling estimates for autonomous dissipative systems , 1995 .

[19]  Anthony N. Kounadis,et al.  On the failure of static stability analyses of nonconservative systems in regions of divergence instability , 1994 .

[20]  Anthony N. Kounadis The existence of regions of divergence instability for nonconservative systems under follower forces , 1983 .

[21]  T. J. Moran A Simple Alternative to the Routh-Hurwitz Criterion for Symmetric Systems , 1970 .

[22]  Nonlinear dynamic buckling of discrete structural systems under impact loading , 1993 .