An Eulerian–Lagrangian method for optimization problems governed by multidimensional nonlinear hyperbolic PDEs

We present a numerical method for solving tracking-type optimal control problems subject to scalar nonlinear hyperbolic balance laws in one and two space dimensions. Our approach is based on the formal optimality system and requires numerical solutions of the hyperbolic balance law forward in time and its nonconservative adjoint equation backward in time. To this end, we develop a hybrid method, which utilizes advantages of both the Eulerian finite-volume central-upwind scheme (for solving the balance law) and the Lagrangian discrete characteristics method (for solving the adjoint transport equation). Experimental convergence rates as well as numerical results for optimization problems with both linear and nonlinear constraints and a duct design problem are presented.

[1]  E. Zuazua,et al.  AN ALTERNATING DESCENT METHOD FOR THE OPTIMAL CONTROL OF THE INVISCID BURGERS EQUATION IN THE PRESENCE OF SHOCKS , 2008 .

[2]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[3]  Stefano Bianchini,et al.  ON THE SHIFT DIFFERENTIABILITY OF THE FLOW GENERATED BY A HYPERBOLIC SYSTEM OF CONSERVATION LAWS , 2000 .

[4]  Michael B. Giles,et al.  Analytic adjoint solutions for the quasi-one-dimensional Euler equations , 2001, Journal of Fluid Mechanics.

[5]  Tamir Tassa,et al.  The convergence rate of Godunov type schemes , 1994 .

[6]  Simona Mancini,et al.  Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient , 2004, math/0403402.

[7]  S. Ulbrich Optimal control of nonlinear hyperbolic conservation laws with source terms , 2001 .

[8]  Laurent Gosse,et al.  Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients , 2000, Math. Comput..

[9]  A. Kurganov,et al.  On the Reduction of Numerical Dissipation in Central-Upwind Schemes , 2006 .

[10]  Stefan Ulbrich,et al.  Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 2: Adjoint Approximations and Extensions , 2010, SIAM J. Numer. Anal..

[11]  Michael B. Giles,et al.  Discrete Adjoint Approximations with Shocks , 2003 .

[12]  Raffaele Marcovecchio,et al.  Linear independence of linear forms in polylogarithms , 2006 .

[13]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[14]  Stefan Ulbrich On the superlinear local convergence of a filter-SQP method , 2004, Math. Program..

[15]  Michael B. Giles,et al.  Adjoint and defect error bounding and correction for functional estimates , 2003 .

[16]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[17]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[18]  Alexander Kurganov,et al.  On a practical implementation of particle methods , 2006 .

[19]  K. P.,et al.  HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .

[20]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[21]  C. SIAMJ.,et al.  CONVERGENCE RESULTS FOR THE FLUX IDENTIFICATION IN A SCALAR CONSERVATION LAW , 1999 .

[22]  F. James,et al.  One-dimensional transport equations with discontinuous coefficients , 1998 .

[23]  Stefan Ulbrich,et al.  Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 1: Linearized Approximations and Linearized Output Functionals , 2010, SIAM J. Numer. Anal..

[24]  F. James,et al.  Differentiability with Respect to Initial Data for a Scalar Conservation Law , 1999 .

[25]  Alexander Kurganov,et al.  On a hybrid finite-volume-particle method , 2004 .

[26]  Eitan Tadmor,et al.  The convergence rate of approximate solutions for nonlinear scalar conservation laws. Final Report , 1991 .

[27]  M. Giles,et al.  Adjoint Error Correction for Integral Outputs , 2003 .

[28]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[29]  Alberto Bressan,et al.  Shift Differentials of Maps in BV Spaces , 2006 .

[30]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[31]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[32]  Michael Herty,et al.  Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws , 2012, Comput. Optim. Appl..

[33]  Michael B. Giles,et al.  Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler equations , 1995 .

[34]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[35]  Peter Spellucci,et al.  Numerische Verfahren der nichtlinearen Optimierung , 1993 .

[36]  Stefan Ulbrich,et al.  Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws , 2003, Syst. Control. Lett..

[37]  A. Bressan,et al.  Optimality Conditions for Solutions to Hyperbolic Balance Laws , 2006 .

[38]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[39]  Adrian Sandu,et al.  On the properties of discrete adjoints of numerical methods for the advection equation , 2008 .

[40]  A. Bressan,et al.  Shift-differentiability of the flow generated by a conservation law , 1996 .

[41]  G. R. Shubin,et al.  A comparison of optimization-based approaches for a model computational aerodynamics design problem , 1992 .

[42]  Knut-Andreas Lie,et al.  On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..

[43]  B. François,et al.  Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness , 1999 .

[44]  A. Bressan,et al.  A variational calculus for discontinuous solutions of systems of conservation laws , 1995 .

[45]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[46]  M. Heinkenschloss,et al.  An Optimal Control Problem for Flows with Discontinuities , 1997 .