High contrast gratings for high-precision metrology

Experiments in the field of high-precision optical metrology are crucially limited by thermal noise of the optical components such as mirrors or beam splitters. Amorphous coatings stacks are found to be a main source for these thermal fluctuations. In this contribution we present approaches to realize coating free optical components based on resonant high contrast gratings (HCGs) made of crystalline silicon. It is shown that beside classical cavity mirrors the concept of HCGs can also be used for reflective cavity couplers. We compare the advantages and challenges of these HCG reflectors with distributed Bragg reflectors made of crystalline coatings for applications in optical metrology.

[1]  R. Nawrodt,et al.  Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures , 2012 .

[2]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[3]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[4]  R L Byer,et al.  All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters. , 1998, Optics letters.

[5]  C. Chang-Hasnain,et al.  A surface-emitting laser incorporating a high-index-contrast subwavelength grating , 2007 .

[6]  P. Chavel,et al.  Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight , 2006, Journal of Lightwave Technology.

[7]  Andreas Tünnermann,et al.  High mechanical Q-factor measurements on silicon bulk samples , 2008 .

[8]  Andreas Tünnermann,et al.  Enhanced angular tolerance of resonant waveguide grating reflectors. , 2011, Optics letters.

[9]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[10]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[11]  Markus Aspelmeyer,et al.  Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium , 2010 .

[12]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[13]  James S. Harris,et al.  Two-dimensional III-V nucleation on Si for nonlinear optics , 2011 .

[14]  Sergey P. Vyatchanin,et al.  The thermal noise in multilayer coating , 2010 .

[15]  Andreas Tünnermann,et al.  Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal. , 2010, Physical review letters.

[16]  Y. Suzuki,et al.  Broad-band mirror (1.12-1.62 /spl mu/m) using a subwavelength grating , 2004, IEEE Photonics Technology Letters.

[17]  Takayuki Tomaru,et al.  MECHANICAL QUALITY FACTOR OF A CRYOGENIC SAPPHIRE TEST MASS FOR GRAVITATIONAL WAVE DETECTORS , 1999 .

[18]  Philippe Dumas,et al.  SILICON ROUGHNESS INDUCED BY PLASMA ETCHING , 1994 .

[19]  T. Gaylord,et al.  Theoretical Analysis of Subwavelength High Contrast Grating Reflectors References and Links , 2022 .

[20]  Sylvain Gigan,et al.  Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime , 2008, 0802.0465.

[21]  Vadim Karagodsky,et al.  Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. , 2010, Optics express.

[22]  Alan W. Hoffman,et al.  Measurements of the mechanical Q of single-crystal silicon at low temperatures , 1978 .

[23]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[24]  Ross C. McPhedran,et al.  The Dielectric Lamellar Diffraction Grating , 1981 .

[25]  A. Tünnermann,et al.  Reflective cavity couplers based on resonant waveguide gratings. , 2011, Optics express.

[26]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[27]  Ernst-Bernhard Kley,et al.  Calculation of thermal noise in grating reflectors , 2013 .