Optimal measurements in phase estimation: simple examples
暂无分享,去创建一个
Augusto Smerzi | Luca Pezzè | Tomasz Wasak | Jan Chwedenczuk | L. Pezzè | A. Smerzi | T. Wasak | J. Chwedeńczuk
[1] Klaus Blaum,et al. Radiative cooling of Al−4 and Al−5 in a cryogenic environment , 2012 .
[2] A. Smerzi,et al. Phase estimation from atom position measurements , 2010, 1012.3593.
[3] J. Grond,et al. Atom interferometry with trapped Bose–Einstein condensates: impact of atom–atom interactions , 2010, 1002.0265.
[4] Yun Li,et al. Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.
[5] G. Tóth,et al. Multipartite entanglement and high precision metrology , 2010, 1006.4368.
[6] R. B. Blakestad,et al. Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.
[7] Wineland,et al. Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[8] F. Piazza,et al. Sub-shot-noise interferometry from measurements of the one-body density , 2011, 1108.2785.
[9] Augusto Smerzi,et al. Fisher information and multiparticle entanglement , 2010, 1006.4366.
[10] W. Wootters. Statistical distance and Hilbert space , 1981 .
[11] V. Vuletić,et al. States of an ensemble of two-level atoms with reduced quantum uncertainty. , 2008, Physical review letters.
[12] Holland,et al. Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.
[13] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[14] Augusto Smerzi,et al. Quantum theory of phase estimation , 2014, 1411.5164.
[15] Augusto Smerzi,et al. Not all pure entangled states are useful for sub-shot-noise interferometry , 2009, 0912.4349.
[16] Augusto Smerzi,et al. Ultrasensitive two-mode interferometry with single-mode number squeezing. , 2013, Physical review letters.
[17] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[18] Philipp Treutlein,et al. Quantum metrology with a scanning probe atom interferometer. , 2013, Physical review letters.
[19] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[20] C. F. Roos,et al. ‘Designer atoms’ for quantum metrology , 2006, Nature.
[21] Moore,et al. Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[22] M. Oberthaler,et al. Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.
[23] H. Proudhon,et al. Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent x-ray diffraction , 2010 .
[24] James D. Louck,et al. Angular Momentum in Quantum Physics: Theory and Application , 1984 .
[25] Augusto Smerzi,et al. Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation. , 2011, Physical review letters.
[26] D. Leibfried,et al. Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.
[27] P. Windpassinger,et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit , 2008, Proceedings of the National Academy of Sciences.
[28] C. Helstrom. Quantum detection and estimation theory , 1969 .
[29] P. Zoller,et al. Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.
[30] Ruth J. Muschel,et al. Corrigendum: Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate toward tumour blood vessels , 2013, Nature Communications.
[31] L. Pezzè,et al. Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.
[33] Holger F. Hofmann,et al. All path-symmetric pure states achieve their maximal phase sensitivity in conventional two-path interferometry , 2008, 0812.0044.
[34] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[35] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[36] H. Cramér. Mathematical methods of statistics , 1947 .
[37] H M Wiseman,et al. Entanglement-enhanced measurement of a completely unknown phase , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.
[38] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[39] M. Oberthaler,et al. Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.
[40] Keiji Sasaki,et al. Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.
[41] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[42] Matthias D. Lang,et al. Optimal quantum-enhanced interferometry using a laser power source. , 2013, Physical review letters.
[43] Klauder,et al. SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.
[44] James K Thompson,et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting. , 2011, Physical review letters.
[45] I. Walmsley,et al. Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.
[46] T. Monz,et al. 14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.
[47] M. Brando,et al. Ferromagnetic quantum criticality in the quasi-one-dimensional heavy fermion metal YbNi4P2 , 2011, 1108.4274.
[48] W. Ertmer,et al. Twin Matter Waves for Interferometry Beyond the Classical Limit , 2011, Science.
[49] A Smerzi,et al. Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry. , 2007, Physical review letters.
[50] Kaushik P. Seshadreesan,et al. Phase estimation at the quantum Cramér-Rao bound via parity detection , 2013 .
[51] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.