Game semantics and linear CPS interpretation

We present a semantic analysis of the "linearly used continuation-passing interpretation" of functional languages, based on game semantics. This consists of a category of games with a coherence condition on moves--yielding a fully complete model of an affine-type theory--and a syntax-independent and full embedding of a category of Hyland-Ong/Nickau-style "well-bracketed" games into it. We show that this embedding corresponds precisely to linear CPS interpretation in its action on a games model of call-by-value PCF, yielding a proof of full abstraction for the associated translation. We discuss extensions of the semantics to deal with recursive types, call-by-name evaluation, nonlocal jumps, and state.

[1]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[2]  James Laird A fully abstract game semantics of local exceptions , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[3]  Samson Abramsky,et al.  A fully abstract game semantics for general references , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[4]  James Laird Finite Models and Full Completeness , 2000, CSL.

[5]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 2000, Inf. Comput..

[6]  C.-H. Luke Ong,et al.  Full Abstraction in the Lazy Lambda Calculus , 1993, Inf. Comput..

[7]  Thomas Streicher,et al.  Classical logic, continuation semantics and abstract machines , 1998, Journal of Functional Programming.

[8]  Masahito Hasegawa Linearly Used Effects: Monadic and CPS Transformations into the Linear Lambda Calculus , 2001, APLAS.

[9]  Olivier Laurent,et al.  About translations of classical logic into polarized linear logic , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[10]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[11]  Samson Abramsky Full Abstraction in the Lazy λ−calculus , 1993 .

[12]  Olivier Danvy,et al.  The Occurrence of Continuation Parameters in CPS Terms , 1995 .

[13]  James Laird,et al.  Full abstraction for functional languages with control , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[14]  Guy McCusker Games and Full Abstraction for a Functional Metalanguage with Recursive Types , 1998, Distinguished Dissertations.

[15]  Frank Pfenning,et al.  Properties of Terms in Continuation-Passing Style in an Ordered Logical Framework , 2000 .

[16]  Peter W. O'Hearn,et al.  Algol-like Languages , 1997, Progress in Theoretical Computer Science.

[17]  Peter Selinger,et al.  Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.

[18]  Andrzej Filinski Linear continuations , 1992, POPL '92.

[19]  Hanno Nickau Hereditarily Sequential Functionals , 1994, LFCS.

[20]  Andrew C. Myers,et al.  Secure Information Flow via Linear Continuations , 2002, High. Order Symb. Comput..

[21]  Nobuko Yoshida,et al.  Game-Theoretic Analysis of Call-by-Value Computation , 1999, Theor. Comput. Sci..

[22]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[23]  Peter W. O'Hearn,et al.  Linear Continuation-Passing , 2002, High. Order Symb. Comput..

[24]  Andrew M. Pitts,et al.  Relational Properties of Domains , 1996, Inf. Comput..

[25]  James David Laird,et al.  A semantic analysis of control , 1999 .

[26]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[27]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[28]  Samson Abramsky,et al.  Call-by-Value Games , 1997, CSL.

[29]  Samson Abramsky,et al.  Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions , 1996, Electron. Notes Theor. Comput. Sci..