Finite-difference methods for simulation models incorporating nonconservative forces

We discuss algorithms applicable to the numerical solution of second-order ordinary differential equations by finite differences. We make particular reference to the solution of the dissipative particle dynamics fluid model, and present extensive results comparing one of the algorithms discussed with the standard method of solution. These results show the successful modeling of phase separation and surface tension in a binary immiscible fluid mixture.

[1]  Peter V. Coveney,et al.  Using Dissipative Particle Dynamics to Model Binary Immiscible Fluids , 1997 .

[2]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[3]  Banavar,et al.  Lattice Boltzmann study of hydrodynamic spinodal decomposition. , 1995, Physical review letters.

[4]  Daniel H. Rothman,et al.  Immiscible cellular-automaton fluids , 1988 .

[5]  Peter V. Coveney,et al.  Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics , 1997 .

[6]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[7]  Peter V. Coveney,et al.  Erratum: Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics [Phys. Rev. E 54, 5134 (1996)] , 1997 .

[8]  M. H. Ernst,et al.  Static and dynamic properties of dissipative particle dynamics , 1997, cond-mat/9702036.

[9]  A. G. Schlijper,et al.  Computer simulation of dilute polymer solutions with the dissipative particle dynamics method , 1995 .

[10]  Pep Español,et al.  Dissipative particle dynamics for interacting multicomponent systems , 1997 .

[11]  Peter V. Coveney,et al.  Lattice-gas simulations of domain growth, saturation, and self-assembly in immiscible fluidsand microemulsions , 1997 .

[12]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[13]  J. Koelman,et al.  Dynamic simulations of hard-sphere suspensions under steady shear , 1993 .

[14]  P. Coveney,et al.  Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics , 1996 .

[15]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[16]  Michael P. Allen,et al.  Computer simulation in chemical physics , 1993 .

[17]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[18]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[19]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[20]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[21]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[22]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[23]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[24]  M. Draganu THE FOKKER-PLANCK EQUATION OF A PLASMA , 1960 .

[25]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Herman J. C. Berendsen,et al.  ALGORITHMS FOR BROWNIAN DYNAMICS , 1982 .

[27]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[28]  Washington Taylor,et al.  Renormalized equilibria of a Schlögl model lattice gas , 1995 .

[29]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .