Noncovalent Interactions in SIESTA Using the vdW-DF Functional: S22 Benchmark and Macrocyclic Structures.

We investigate the performance of the vdW-DF functional of Dion et al. implemented in the SIESTA code. In particular, the S22 data set and several calixarene-based host-guest structures are examined to assess the performance of the functional. The binding energy error statistics for the S22 data set reveal that the vdW-DF functional performs very well when compared to a range of other methods of treating dispersion in density functional theory, and to vdW-DF implementations in other codes. For the calixarene host-guest structures, the structural properties and binding energies are compared to previous experimental and computational studies, and in most cases we find that vdW-DF provides superior results to other computational studies.

[1]  Edward G Hohenstein,et al.  Basis set consistent revision of the S22 test set of noncovalent interaction energies. , 2010, The Journal of chemical physics.

[2]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[3]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[4]  Xin Xu,et al.  From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[6]  Donald G Truhlar,et al.  Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. , 2005, The journal of physical chemistry. A.

[7]  B. Sumpter,et al.  Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. , 2011, The Journal of chemical physics.

[8]  Julian D Gale,et al.  Ab Initio Simulations of the (101) Surfaces of Potassium Dihydrogenphosphate (KDP). , 2006, Journal of chemical theory and computation.

[9]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction: high-order dispersion coefficients. , 2006, The Journal of chemical physics.

[10]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[11]  Kevin E. Riley,et al.  Performance of the DFT-D method, paired with the PCM implicit solvation model, for the computation of interaction energies of solvated complexes of biological interest. , 2007, Physical chemistry chemical physics : PCCP.

[12]  Robert W. Williams,et al.  van der Waals corrections to density functional theory calculations: Methane, ethane, ethylene, benzene, formaldehyde, ammonia, water, PBE, and CPMD , 2006 .

[13]  G. Enright,et al.  A reexamination of the low-temperature crystal structure of the p-tert-butylcalix[4]arene-toluene inclusion compound. Differences in spatial averaging with Cu and Mo Kalpha radiation. , 2002, Acta crystallographica. Section B, Structural science.

[14]  T. Debaerdemaeker,et al.  The Inclusion of Carbon Disulfide in p-tert-Butylcalix[4]-and [6 ]arene - A Combined Crystallographic and Vibrational Spectroscopic Study , 2000 .

[15]  R. Ungaro,et al.  Crystal and molecular structure of cyclo{quater[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]} toluene (1 : 1) clathrate , 1979 .

[16]  P. Ugliengo,et al.  B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals , 2008 .

[17]  Yan Zhao,et al.  Density Functionals for Noncovalent Interaction Energies of Biological Importance. , 2007, Journal of chemical theory and computation.

[18]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction. , 2005, The Journal of chemical physics.

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  P. Karamertzanis,et al.  Molecular conformations and relative stabilities can be as demanding of the electronic structure method as intermolecular calculations. , 2006, The journal of physical chemistry. A.

[21]  D. Truhlar,et al.  A Prototype for Graphene Material Simulation : Structures and Interaction Potentials of Coronene Dimers , 2008 .

[22]  S. Grimme,et al.  Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. , 2006, Physical chemistry chemical physics : PCCP.

[23]  F. Leusen,et al.  A major advance in crystal structure prediction. , 2008, Angewandte Chemie.

[24]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[25]  S. Grimme,et al.  Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. , 2007, Physical chemistry chemical physics : PCCP.

[26]  D. Langreth,et al.  Energetics and dynamics of H(2) adsorbed in a nanoporous material at low temperature. , 2009, Physical review letters.

[27]  D. J. Carter,et al.  Ab Initio Molecular Dynamics Simulations of (101) Surfaces of Potassium Dihydrogenphosphate. , 2011, Journal of chemical theory and computation.

[28]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  A. Hesselmann Derivation of the dispersion energy as an explicit density- and exchange-hole functional. , 2009, The Journal of chemical physics.

[30]  Jirí Cerný,et al.  Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations , 2007, J. Comput. Chem..

[31]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[32]  R. Nieminen,et al.  Linear-scaling self-consistent implementation of the van der Waals density functional , 2009 .

[33]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[34]  J. Schatz,et al.  Geometry and GIAO-DFT chemical shift calculations of calixarene complexes—the inclusion of carbon disulfide in p-tert-butylcalix[4]arene , 2000 .

[35]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[36]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional made simple. , 2009, Physical review letters.

[37]  W. Goddard,et al.  Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics , 2009, Proceedings of the National Academy of Sciences.

[38]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[39]  A. Becke,et al.  Numerical solution of Poisson’s equation in polyatomic molecules , 1988 .

[40]  Axel D. Becke,et al.  van der Waals Interactions in Density-Functional Theory: Intermolecular Complexes , 2010 .

[41]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[42]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[43]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[44]  A. Rohl,et al.  An ab initio study of the influence of crystal packing on the host-guest interactions of calix[4]arene crystal structures. , 2001, Chemical communications.

[45]  R. Caciuffo,et al.  Temperature Dependence of the Weak Host-guest Interactions in the p‐tertbutylcalix[4]Arene 1:1 Toluene Complex , 1998 .

[46]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.