Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave-mixing

The efficiency of supercontinuum generation in photonic crystal fibers is significantly improved by designing the dispersion to allow widely separated spectral lines generated by degenerate four-wave-mixing directly from the pump to broaden and merge.

[1]  Magnus Karlsson,et al.  Four-wave mixing in fibers with randomly varying zero-dispersion wavelength , 1998 .

[2]  R. Tyson Bit-error rate for free-space adaptive optics laser communications. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  P. Andrés,et al.  Designing the properties of dispersion-flattened photonic crystal fibers. , 2001, Optics express.

[4]  Robert R. Alfano,et al.  Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers , 1987 .

[5]  Josselin Garnier,et al.  Modulational instability induced by randomly varying coefficients for the nonlinear Schrödinger equation , 2000 .

[6]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[7]  P. Andrés,et al.  Nearly zero ultraflattened dispersion in photonic crystal fibers. , 2000, Optics letters.

[8]  T A Birks,et al.  Supercontinuum generation in tapered fibers. , 2002, Optics letters.

[9]  R. Leonhardt,et al.  White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. , 2001, Optics letters.

[10]  Toshio Morioka,et al.  Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile , 1997 .

[11]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[12]  A. Petersson,et al.  Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 /spl mu/m , 2002, Optical Fiber Communication Conference and Exhibit.

[13]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[14]  R. Leonhardt,et al.  Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers , 2002 .

[15]  M. Nakazawa,et al.  Fundamentals of stable continuum generation at high repetition rates , 2000, IEEE Journal of Quantum Electronics.

[16]  Robert R. Alfano,et al.  The Supercontinuum Laser Source , 1989 .

[17]  M. Karlsson,et al.  Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves , 1996, IEEE Photonics Technology Letters.

[18]  Chinlon Lin,et al.  New nanosecond continuum for excited-state spectroscopy , 1976 .

[19]  Hidehiko Takara,et al.  Analysis and design of supercontinuum pulse generation in a single-mode optical fiber: erratum , 2001 .

[20]  Timothy A. Birks,et al.  Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source , 2002 .

[21]  G Korn,et al.  Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.

[22]  P. Roberts,et al.  Demonstration of ultra-flattened dispersion in photonic crystal fibers. , 2002, Optics express.

[23]  N. Kuwaki,et al.  Evaluation of longitudinal chromatic dispersion , 1990 .

[24]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[25]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[26]  Anton Husakou,et al.  Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers , 2002 .

[27]  J. Nagel,et al.  Dynamical equation for polarization dispersion. , 1991, Optics letters.

[28]  Guy Millot,et al.  Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers , 1998 .

[29]  L. Provino,et al.  Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping , 2002 .

[30]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[31]  C R Menyuk,et al.  Effects of randomly varying birefringence on soliton interactions in optical fibers. , 1991, Optics letters.

[32]  Robert J. Knapp,et al.  Transmission of solitons through random media , 1995 .

[33]  K. Hansen,et al.  Dispersion flattened hybrid-core nonlinear photonic crystal fiber. , 2003, Optics express.

[34]  Vladimir Kalosha,et al.  Ultrawide spectral broadening and pulse compression in tapered and photonic fibers , 2001, QELS 2001.