The number of 2-edge-colored complete graphs with unique hamiltonian alternating cycle

Let G be a 2-edge-colored complete graph of even order n. A cycle of G is alternating if any two successive edges differ in color. We prove that there is a one-to-one correspondence between the set of bipartite tournaments of order n admitting a unique Hamiltonian cycle and the set of 2-edge-colored complete graphs of order n admitting a unique alternating Hamiltonian cycle.

[1]  Béla Bollobás,et al.  Alternating Hamiltonian cycles , 1976 .

[2]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[3]  J. Moon Topics on tournaments , 1968 .

[4]  Roland Häggkvist,et al.  Alternating cycles in edge-partitioned graphs , 1983, J. Comb. Theory, Ser. B.

[5]  Yannis Manoussakis,et al.  The number of bipartite tournaments with a unique given factor , 1989, J. Graph Theory.

[6]  Yannis Manoussakis,et al.  Alternating Paths in Edge-colored Complete Graphs , 1995, Discret. Appl. Math..

[7]  Gregory Gutin,et al.  Alternating cycles and trails in 2-edge-coloured complete multigraphs , 1998, Discret. Math..

[8]  C. T. Zahn Alternating Euler Paths for Packings and Covers , 1973 .

[9]  T. C. Hu,et al.  Graph folding and programmable logic array , 1987, Networks.

[10]  Rachid Saad,et al.  Finding a Longest Alternating Cycle in a 2-edge-coloured Complete Graph is in RP , 1996, Combinatorics, Probability and Computing.

[11]  Dennis Saleh Zs , 2001 .

[12]  Dietmar Dorninger,et al.  Hamiltonian circuits determining the order of chromosomes , 1994, Discret. Appl. Math..

[13]  Zsolt Tuza,et al.  Packing Problems in Edge-colored Graphs , 1994, Discret. Appl. Math..

[14]  C. C. Chen,et al.  Graphs with Hamiltonian cycles having adjacent lines different colors , 1976, J. Comb. Theory, Ser. B.

[15]  Pavel A. Pevzner,et al.  DNA physical mapping and alternating Eulerian cycles in colored graphs , 1995, Algorithmica.

[16]  D Dorninger,et al.  Geometrical constraints on Bennett's predictions of chromosome order , 1987, Heredity.

[17]  L. Lovász Combinatorial problems and exercises , 1979 .

[18]  Evripidis Bampis,et al.  On the Parallel Complexity of the Alternating Hamiltonian Cycle Problem , 1995, Combinatorics and Computer Science.