Structural basis of J cochaperone binding and regulation of Hsp70.

[1]  Lila M Gierasch,et al.  Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. , 2007, Molecular cell.

[2]  Bernd Bukau,et al.  Allosteric Regulation of Hsp70 Chaperones Involves a Conserved Interdomain Linker* , 2006, Journal of Biological Chemistry.

[3]  R. Sousa,et al.  Keep the Traffic Moving: Mechanism of the Hsp70 Motor , 2006, Traffic.

[4]  M. Mayer,et al.  Amide Hydrogen Exchange Reveals Conformational Changes in Hsp70 Chaperones Important for Allosteric Regulation* , 2006, Journal of Biological Chemistry.

[5]  Ravindranath Garimella,et al.  Hsc70 contacts helix III of the J domain from polyomavirus T antigens: addressing a dilemma in the chaperone hypothesis of how they release E2F from pRb. , 2006, Biochemistry.

[6]  R. Sousa,et al.  Structural basis of interdomain communication in the Hsc70 chaperone. , 2005, Molecular cell.

[7]  B. Schaffhausen,et al.  Genetic Analysis of the Polyomavirus DnaJ Domain , 2005, Journal of Virology.

[8]  G. Blatch,et al.  Not all J domains are created equal: Implications for the specificity of Hsp40–Hsp70 interactions , 2005, Protein science : a publication of the Protein Society.

[9]  E. Zuiderweg,et al.  NMR investigations of allosteric processes in a two-domain Thermus thermophilus Hsp70 molecular chaperone. , 2005, Journal of molecular biology.

[10]  E. Zuiderweg,et al.  NMR Study of Nucleotide-induced Changes in the Nucleotide Binding Domain of Thermus thermophilus Hsp70 Chaperone DnaK , 2004, Journal of Biological Chemistry.

[11]  E. Zuiderweg,et al.  The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  T. Lithgow,et al.  The J‐protein family: modulating protein assembly, disassembly and translocation , 2004, EMBO reports.

[13]  Maolin Guo,et al.  Crystal structure and characterization of a cytochrome c peroxidase-cytochrome c site-specific cross-link. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Eisenberg,et al.  Structure of the functional fragment of auxilin required for catalytic uncoating of clathrin-coated vesicles. , 2004, Biochemistry.

[15]  Y. Ishikawa-Brush,et al.  Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface. , 2003, Biochemistry.

[16]  J. Pipas,et al.  Mutagenesis of a functional chimeric gene in yeast identifies mutations in the simian virus 40 large T antigen J domain , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  George J. Augustine,et al.  Uncoating of Clathrin-Coated Vesicles in Presynaptic Terminals Roles for Hsc70 and Auxilin , 2001, Neuron.

[18]  A Vagin,et al.  An approach to multi-copy search in molecular replacement. , 2000, Acta crystallographica. Section D, Biological crystallography.

[19]  D. Mckay,et al.  Mapping the role of active site residues for transducing an ATP-induced conformational change in the bovine 70-kDa heat shock cognate protein. , 1999, Biochemistry.

[20]  T. Rapoport,et al.  Interaction of BiP with the J-domain of the Sec63p Component of the Endoplasmic Reticulum Protein Translocation Complex* , 1999, The Journal of Biological Chemistry.

[21]  J. Reinstein,et al.  Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Gross,et al.  Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A Valencia,et al.  Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[25]  T. Rapoport,et al.  J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. , 1998, Molecular cell.

[26]  D. Mckay,et al.  Structural replacement of active site monovalent cations by the epsilon-amino group of lysine in the ATPase fragment of bovine Hsc70. , 1998, Biochemistry.

[27]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[28]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  E. Ungewickell,et al.  Functional Interaction of the Auxilin J Domain with the Nucleotide- and Substrate-binding Modules of Hsc70* , 1997, The Journal of Biological Chemistry.

[30]  Bernd Bukau,et al.  Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries , 1997, The EMBO journal.

[31]  E. Craig,et al.  Functional Specificity Among Hsp70 Molecular Chaperones , 1997, Science.

[32]  E. Ungewickell,et al.  Mechanism of clathrin basket dissociation: separate functions of protein domains of the DnaJ homologue auxilin , 1996, The Journal of cell biology.

[33]  Craig M. Ogata,et al.  Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK , 1996, Science.

[34]  E. Eisenberg,et al.  Role of auxilin in uncoating clathrin-coated vesicles , 1995, Nature.

[35]  F. Hartl,et al.  The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[36]  K. Flaherty,et al.  Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. , 1994, The Journal of biological chemistry.

[37]  C. Sander,et al.  The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. , 1994, The EMBO journal.

[38]  T. Steitz,et al.  Structure of DNA polymerase I Klenow fragment bound to duplex DNA , 1993, Science.

[39]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[40]  A T Brünger,et al.  Slow-cooling protocols for crystallographic refinement by simulated annealing. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[41]  J. Rothman,et al.  Uncoating ATPase is a member of the 70 kilodalton family of stress proteins , 1986, Cell.

[42]  E. Ungewickell The 70‐kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. , 1985, The EMBO journal.

[43]  Soojin Lee,et al.  Mechanisms for regulation of Hsp70 function by Hsp40 , 2003, Cell stress & chaperones.

[44]  Z. Otwinowski,et al.  research papers Acta Crystallographica Section A Foundations of , 2003 .

[45]  Martyn D Winn,et al.  Macromolecular TLS refinement in REFMAC at moderate resolutions. , 2003, Methods in enzymology.

[46]  M. Mayer,et al.  Hsp70 chaperone machines. , 2001, Advances in protein chemistry.

[47]  M Rance,et al.  Sensitivity improvement of transverse relaxation-optimized spectroscopy. , 1999, Journal of magnetic resonance.

[48]  R. Sousa,et al.  Structural Biology and Crystallization Communications Crystallization of a Functionally Intact Hsc70 Chaperone , 2022 .