SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems

SparsePOP is a Matlab implementation of the sparse semidefinite programming (SDP) relaxation method for approximating a global optimal solution of a polynomial optimization problem (POP) proposed by Waki et al. [2006]. The sparse SDP relaxation exploits a sparse structure of polynomials in POPs when applying “a hierarchy of LMI relaxations of increasing dimensions” Lasserre [2006]. The efficiency of SparsePOP to approximate optimal solutions of POPs is thus increased, and larger-scale POPs can be handled.

[1]  Kim-Chuan Toh,et al.  Solving Some Large Scale Semidefinite Programs via the Conjugate Residual Method , 2002, SIAM J. Optim..

[2]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[3]  Kim-Chuan Toh,et al.  Solving Large Scale Semidefinite Programs via an Iterative Solver on the Augmented Systems , 2003, SIAM J. Optim..

[4]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations for Polynomial Optimization with Sparsity , 2006, ICMS.

[5]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[6]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..

[7]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[8]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[9]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[10]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[11]  Masakazu Kojima,et al.  A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion , 2006, Parallel Comput..

[12]  Masakazu Kojima,et al.  Sparsity in sums of squares of polynomials , 2005, Math. Program..

[13]  Masakazu Kojima,et al.  Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems , 2005, SIAM J. Optim..

[14]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[15]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[16]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[17]  Masakazu Kojima,et al.  SDPA (SemiDefinite Programming Algorithm) User's Manual Version 6.2.0 , 1995 .