Toward pulsed power uses for photoconductive semiconductor switches: Closing switches

Recent results on Photoconductive Semiconductor Switches (PCSS) are presented. For Si and GaAs switches surface flashover, contact degradation, and current limitations are addressed. For Si samples have been obtained that, without being triggered, withstand fields of up to 85 kV/cm produced by an approx.2-..mu..s wide voltage pulse. The 1-inch diameter, Si samples (''gap length'' of 1.5 cm) have been switched at 36 kV/cm (approx. =54 kV) into an approx.30-..cap omega.. load with a current of 703 A. For GaAs, most samples can withstand, without being triggered, 100 kV/cm. At low electric fields the GaAs samples behave as switches that close during the laser pulse and then open in nanoseconds. At high voltages GaAs does not open. In this mode, called lock-on, up to 42.7 kV/cm (64.1 kV) has been switched. The lock-on mode can be triggered with small laser powers. Plans are being made to use large arrays of GaAs samples to switch 1 MV and 156 kA.