Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors

We have used pattern analysis of proton magnetic resonance spectroscopic imaging (1H MRSI) data in a variety of situations related to the clinical management of patients with brain tumors and other cerebral space‐occupying lesions (SOLs). Here, we review how ‘leave‐one‐out’ linear discriminant analyses (LDAs) of in vivo 1H MRSI spectral patterns have enabled us to quickly, accurately, and non‐invasively: (1) discriminate amongst tissue arising from the five most common types of supratentorial tumors found in adults, and (2) use the metabolic heterogeneity of cerebral SOLs to predict certain pathological characteristics that are useful in guiding stereotaxic biopsy and selective tumor resection. These findings suggest that pattern analysis of 1H MRSI data can significantly improve the diagnostic specificity and surgical management of patients with certain cerebral SOLs. © 1998 John Wiley & Sons, Ltd.

[1]  J Hennig,et al.  Human brain tumors: assessment with in vivo proton MR spectroscopy. , 1993, Radiology.

[2]  D. Graham,et al.  Atlas of Tumor Pathology: Tumors of the central nervous system , 1995 .

[3]  M. Chamberlain,et al.  Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas , 1988, Neurology.

[4]  C Van Ongeval,et al.  Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors. , 1991, Journal of computer assisted tomography.

[5]  J A Frank,et al.  Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. , 1990, Radiology.

[6]  D. Louis Collins,et al.  Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy , 1996, Nature Medicine.

[7]  A. Köppen,et al.  Uptake and Metabolism of Choline by Rat Brain After Acute Choline Administration , 1992, Journal of neurochemistry.

[8]  Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. , 1997 .

[9]  Ian C. P. Smith,et al.  1H MRS of high grade astrocytomas: Mobile lipid accumulation in necrotic tissue , 1994, NMR in biomedicine.

[10]  M. Apuzzo Benign cerebral glioma , 1995 .

[11]  G. Dichiro Brain imaging of glucose utilization in cerebral tumors. , 1985 .

[12]  M. Apuzzo Brain surgery : complication avoidance and management , 1993 .

[13]  Y. Kinoshita,et al.  Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. , 1994, Neurosurgery.

[14]  J. Clausen,et al.  PHOSPHOLIPIDS AND GLYCOLIPIDS OF TUMOURS IN THE CENTRAL NERVOUS SYSTEM , 1965, Journal of neurochemistry.

[15]  Dorothy S. Russell,et al.  Pathology of Tumours of the Nervous System , 1972 .

[16]  Gordon Sze,et al.  Computed Tomography and Magnetic Resonance Tomography of Intracranial Tumors , 1989, Springer Berlin Heidelberg.

[17]  R. Sauter,et al.  Intratumoral lipids in 1H MRS in vivo in brain tumors: experience of the Siemens cooperative clinical trial. , 1996, Anticancer research.

[18]  K. Behar,et al.  Analysis of macromolecule resonances in 1H NMR spectra of human brain , 1994, Magnetic resonance in medicine.

[19]  L D Lunsford,et al.  Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. , 1993, Journal of neurosurgery.

[20]  Mental Disease,et al.  Brain imaging and brain function , 1985 .

[21]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[22]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[23]  G. Sutherland,et al.  High‐Resolution 1H NMR spectroscopy studies of extracts of human cerebral neoplasms , 1992, Magnetic resonance in medicine.

[24]  G Tedeschi,et al.  Brain regional distribution pattern of metabolite signal intensities in young adults by proton magnetic resonance spectroscopic imaging , 1995, Neurology.

[25]  G. Bydder,et al.  Magnetic Resonance Scanning and Epilepsy , 1994, NATO ASI Series.

[26]  M Noble,et al.  Specific Expression of N‐Acetylaspartate in Neurons, Oligodendrocyte‐Type‐2 Astrocyte Progenitors, and Immature Oligodendrocytes In Vitro , 1992, Journal of neurochemistry.

[27]  E. Shoubridge,et al.  Proton and phosphorus magnetic resonance spectroscopy of human astrocytomas in vivo. Preliminary observations on tumor grading , 1990, NMR in biomedicine.

[28]  J. Saunders,et al.  Classification of Brain Tumors by Ex Vivo 1H NMR Spectroscopy , 1995, Journal of neurochemistry.

[29]  R Kasrai,et al.  Magnetic Resonance Spectroscopy Guided Brain Tumor Resection: Differentiation Between Recurrent Glioma and Radiation Change in Two Diagnostically Difficult Cases , 1998, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[30]  J. Coyle,et al.  Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies , 1991, Neuroscience.

[31]  T R Brown,et al.  Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. , 1996, Journal of neurosurgery.

[32]  B A Kall,et al.  Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. , 1987, Mayo Clinic proceedings.

[33]  O. Henriksen,et al.  In VIVO 1H-Spectroscopy of Human Intracranial Tumors at 1.5 Tesla , 1991, Acta radiologica.

[34]  P R Luyten,et al.  Metabolic imaging of patients with intracranial tumors: H-1 MR spectroscopic imaging and PET. , 1990, Radiology.

[35]  J. Cairncross,et al.  Low-grade glioma. To treat or not to treat? , 1989, Archives of neurology.

[36]  S. Naruse,et al.  [The clinical application of multi-voxel 1H-CSI (chemical shift imaging) in brain tumors]. , 1991, Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica.

[37]  J. Voges,et al.  In vivo imaging of glucose consumption and lactate concentration in human gliomas , 1992, Annals of neurology.

[38]  I Mader,et al.  In Vivo proton MR spectroscopy of human gliomas: definition of metabolic coordinates for multi‐dimensional classification , 1995, Magnetic resonance in medicine.

[39]  A. Friedman,et al.  Influence of the type of surgery on the histologic diagnosis in patients with anaplastic gliomas , 1991, Neurology.

[40]  G. Sutherland,et al.  Mobile lipids and metabolic heterogeneity of brain tumours as detectable by Ex Vivo 1H MR spectroscopy , 1994, NMR in biomedicine.

[41]  J A Frank,et al.  Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. , 1992, Radiology.

[42]  B. Scheithauer,et al.  Surgical Pathology of the Nervous System and its Coverings , 1976 .

[43]  M Ala-Korpela,et al.  Automated classification of human brain tumours by neural network analysis using in vivo 1H magnetic resonance spectroscopic metabolite phenotypes. , 1996, Neuroreport.

[44]  S. Green,et al.  Glioblastoma multiforme and anaplastic astrocytoma pathologic criteria and prognostic implications , 1985, Cancer.

[45]  D. Gadian,et al.  Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  Richard B. Richter,et al.  Pathology of Tumors of the Nervous System. , 1964 .

[47]  Hidehiko Kajiwara,et al.  Proton Magnetic Resonance Spectroscopy of Brain TumorsAn In Vitro Study , 1994 .

[48]  D. Schoenfeld,et al.  Necrosis as a prognostic criterion in malignant supratentorial, astrocytic gliomas , 1983, Cancer.

[49]  David G. Gadian,et al.  Proton MR Spectroscopy of Intracranial Tumours: In Vivo and In Vitro Studies , 1990, Journal of computer assisted tomography.

[50]  R. Kauppinen,et al.  Nuclear magnetic resonance spectroscopy studies of the brain , 1994, Progress in Neurobiology.

[51]  P R Luyten,et al.  Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1h nmr spectroscopic imaging , 1990, Magnetic resonance in medicine.