Motivic Springer theory

We show that representations of convolution algebras such as Lustzig’s graded affine Hecke algebra or the quiver Hecke algebra and quiver Schur algebra in type A and à can be realised in terms of certain equivariant motivic sheaves called Springer motives. To this end, we lay foundations to a motivic Springer theory and prove formality results using weight structures. As byproduct, we express Koszul and Ringel duality in terms of a weight complex functor and show that partial quiver flag varieties in type à (with cyclic orientation) admit an affine paving.

[1]  L. Rider,et al.  Formality and Lusztig’s Generalized Springer Correspondence , 2017, Algebras and Representation Theory.

[2]  L. Rider Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence , 2012, 1206.4343.

[3]  G. Lusztig Cuspidal local systems and graded Hecke algebras, I , 1988 .

[4]  Olaf M. Schnürer Equivariant sheaves on flag varieties , 2008 .

[5]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[6]  P. Deligne,et al.  Analyse et topologie sur les espaces singuliers , 1982 .

[7]  Timo Richarz,et al.  Tate motives on Witt vector affine flag varieties , 2020, Selecta Mathematica.

[8]  Giovanni Cerulli Irelli,et al.  Cell decompositions and algebraicity of cohomology for quiver Grassmannians , 2018, Advances in Mathematics.

[9]  M. Saito,et al.  A young person's guide to mixed Hodge modules , 2016, 1605.00435.

[10]  J. Ayoub La réalisation étale et les opérations de Grothendieck , 2014 .

[11]  D. Yang,et al.  Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras , 2012, Documenta Mathematica.

[12]  C. Stroppel,et al.  Quadratic duals, Koszul dual functors, and applications , 2006, math/0603475.

[13]  T. A. Springer A construction of representations of Weyl groups , 1978 .

[14]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[15]  W. Soergel,et al.  PERVERSE MOTIVES AND GRADED DERIVED CATEGORY ${\mathcal{O}}$ , 2014, Journal of the Institute of Mathematics of Jussieu.

[16]  J. Eberhardt,et al.  Mixed motives and geometric representation theory in equal characteristic , 2016, Selecta Mathematica.

[17]  Jin Fangzhou Borel–Moore motivic homology and weight structure on mixed motives , 2016 .

[18]  David Pauksztello Compact corigid objects in triangulated categories and co-t-structures , 2007, 0705.0102.

[19]  J. Ayoub Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique , 2006 .

[20]  J. Milne Motives — Grothendieck’s Dream , 2012 .

[21]  M. Bondarko Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general) , 2007, 0704.4003.

[22]  D. Quillen On the Cohomology and K-Theory of the General Linear Groups Over a Finite Field , 1972 .

[23]  T. Przeździecki Quiver Schur algebras and cohomological Hall algebras , 2019, 1907.03679.

[24]  M. Bergh,et al.  Semiorthogonal decompositions of the categories of equivariant coherent sheaves for some reflection groups , 2015, Journal of the European Mathematical Society.

[25]  George Lusztig,et al.  Affine Hecke algebras and their graded version , 1989 .

[26]  A. Suslin,et al.  Cycles, Transfers, and Motivic Homology Theories. (AM-143) , 2011 .

[27]  M. Bondarko ]-motivic resolution of singularities, and applications , 2010, 1002.2651.

[28]  W. Soergel,et al.  Equivariant motives and geometric representation theory. (with an appendix by F. H\"ormann and M. Wendt). , 2018, 1809.05480.

[29]  Olivier Schiffmann,et al.  LECTURES ON HALL ALGEBRAS , 2006, math/0611617.

[30]  Denis-Charles Cisinski,et al.  Triangulated Categories of Mixed Motives , 2009, Springer Monographs in Mathematics.

[31]  N. Chriss,et al.  Representation theory and complex geometry , 1997 .

[32]  A. Krishna Equivariant K ‐theory and higher Chow groups of schemes , 2009, 0906.3109.

[33]  A. Huber,et al.  The slice filtration and mixed Tate motives , 2006, Compositio Mathematica.

[34]  J. Bernstein,et al.  Equivariant Sheaves and Functors , 1994 .

[35]  L. Rider,et al.  Perverse Sheaves on the Nilpotent Cone and Lusztig's Generalized Springer Correspondence , 2014, 1409.7132.

[36]  K. Aoki The weight complex functor is symmetric monoidal , 2019, Advances in Mathematics.

[37]  B. Webster,et al.  Weighted Khovanov-Lauda-Rouquier Algebras , 2012, Documenta Mathematica.

[38]  J. Eberhardt Springer motives , 2018, 1812.04796.

[39]  V. Voevodsky Triangulated categories of motives over a field , 2015 .

[40]  M. Levine Mixed Motives , 2004 .

[41]  Burt Totaro,et al.  The Chow ring of a classifying space , 1998, math/9802097.

[42]  G. Modoi Reasonable triangulated categories have filtered enhancements , 2017, Proceedings of the American Mathematical Society.

[43]  A. Krishna Higher Chow groups of varieties with group action , 2013 .

[44]  William Graham,et al.  Equivariant intersection theory (With an Appendix by Angelo Vistoli: The Chow ring of M2) , 1998 .

[45]  D. Kazhdan,et al.  Proof of the Deligne-Langlands conjecture for Hecke algebras , 1987 .

[46]  A diagrammatic approach to categorification of quantum groups II , 2009 .

[47]  Spencer Bloch,et al.  Algebraic cycles and higher K-theory , 1986 .

[48]  Syu Kato An algebraic study of extension algebras , 2012, 1207.4640.

[49]  J. Lurie Higher Topos Theory , 2006, math/0608040.