Motivic Springer theory
暂无分享,去创建一个
[1] L. Rider,et al. Formality and Lusztig’s Generalized Springer Correspondence , 2017, Algebras and Representation Theory.
[2] L. Rider. Mixed categories, formality for the nilpotent cone, and a derived Springer correspondence , 2012, 1206.4343.
[3] G. Lusztig. Cuspidal local systems and graded Hecke algebras, I , 1988 .
[4] Olaf M. Schnürer. Equivariant sheaves on flag varieties , 2008 .
[5] Roger W. Carter,et al. Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .
[6] P. Deligne,et al. Analyse et topologie sur les espaces singuliers , 1982 .
[7] Timo Richarz,et al. Tate motives on Witt vector affine flag varieties , 2020, Selecta Mathematica.
[8] Giovanni Cerulli Irelli,et al. Cell decompositions and algebraicity of cohomology for quiver Grassmannians , 2018, Advances in Mathematics.
[9] M. Saito,et al. A young person's guide to mixed Hodge modules , 2016, 1605.00435.
[10] J. Ayoub. La réalisation étale et les opérations de Grothendieck , 2014 .
[11] D. Yang,et al. Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras , 2012, Documenta Mathematica.
[12] C. Stroppel,et al. Quadratic duals, Koszul dual functors, and applications , 2006, math/0603475.
[13] T. A. Springer. A construction of representations of Weyl groups , 1978 .
[14] Wolfgang Soergel,et al. Koszul Duality Patterns in Representation Theory , 1996 .
[15] W. Soergel,et al. PERVERSE MOTIVES AND GRADED DERIVED CATEGORY ${\mathcal{O}}$ , 2014, Journal of the Institute of Mathematics of Jussieu.
[16] J. Eberhardt,et al. Mixed motives and geometric representation theory in equal characteristic , 2016, Selecta Mathematica.
[17] Jin Fangzhou. Borel–Moore motivic homology and weight structure on mixed motives , 2016 .
[18] David Pauksztello. Compact corigid objects in triangulated categories and co-t-structures , 2007, 0705.0102.
[19] J. Ayoub. Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique , 2006 .
[20] J. Milne. Motives — Grothendieck’s Dream , 2012 .
[21] M. Bondarko. Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general) , 2007, 0704.4003.
[22] D. Quillen. On the Cohomology and K-Theory of the General Linear Groups Over a Finite Field , 1972 .
[23] T. Przeździecki. Quiver Schur algebras and cohomological Hall algebras , 2019, 1907.03679.
[24] M. Bergh,et al. Semiorthogonal decompositions of the categories of equivariant coherent sheaves for some reflection groups , 2015, Journal of the European Mathematical Society.
[25] George Lusztig,et al. Affine Hecke algebras and their graded version , 1989 .
[26] A. Suslin,et al. Cycles, Transfers, and Motivic Homology Theories. (AM-143) , 2011 .
[27] M. Bondarko. ]-motivic resolution of singularities, and applications , 2010, 1002.2651.
[28] W. Soergel,et al. Equivariant motives and geometric representation theory. (with an appendix by F. H\"ormann and M. Wendt). , 2018, 1809.05480.
[29] Olivier Schiffmann,et al. LECTURES ON HALL ALGEBRAS , 2006, math/0611617.
[30] Denis-Charles Cisinski,et al. Triangulated Categories of Mixed Motives , 2009, Springer Monographs in Mathematics.
[31] N. Chriss,et al. Representation theory and complex geometry , 1997 .
[32] A. Krishna. Equivariant K ‐theory and higher Chow groups of schemes , 2009, 0906.3109.
[33] A. Huber,et al. The slice filtration and mixed Tate motives , 2006, Compositio Mathematica.
[34] J. Bernstein,et al. Equivariant Sheaves and Functors , 1994 .
[35] L. Rider,et al. Perverse Sheaves on the Nilpotent Cone and Lusztig's Generalized Springer Correspondence , 2014, 1409.7132.
[36] K. Aoki. The weight complex functor is symmetric monoidal , 2019, Advances in Mathematics.
[37] B. Webster,et al. Weighted Khovanov-Lauda-Rouquier Algebras , 2012, Documenta Mathematica.
[38] J. Eberhardt. Springer motives , 2018, 1812.04796.
[39] V. Voevodsky. Triangulated categories of motives over a field , 2015 .
[40] M. Levine. Mixed Motives , 2004 .
[41] Burt Totaro,et al. The Chow ring of a classifying space , 1998, math/9802097.
[42] G. Modoi. Reasonable triangulated categories have filtered enhancements , 2017, Proceedings of the American Mathematical Society.
[43] A. Krishna. Higher Chow groups of varieties with group action , 2013 .
[44] William Graham,et al. Equivariant intersection theory (With an Appendix by Angelo Vistoli: The Chow ring of M2) , 1998 .
[45] D. Kazhdan,et al. Proof of the Deligne-Langlands conjecture for Hecke algebras , 1987 .
[46] A diagrammatic approach to categorification of quantum groups II , 2009 .
[47] Spencer Bloch,et al. Algebraic cycles and higher K-theory , 1986 .
[48] Syu Kato. An algebraic study of extension algebras , 2012, 1207.4640.
[49] J. Lurie. Higher Topos Theory , 2006, math/0608040.