Spectral Norm of Circulant-Type Matrices

We first discuss the convergence in probability and in distribution of the spectral norm of scaled Toeplitz, circulant, reverse circulant, symmetric circulant, and a class of k-circulant matrices when the input sequence is independent and identically distributed with finite moments of suitable order and the dimension of the matrix tends to ∞.When the input sequence is a stationary two-sided moving average process of infinite order, it is difficult to derive the limiting distribution of the spectral norm, but if the eigenvalues are scaled by the spectral density, then the limits of the maximum of modulus of these scaled eigenvalues can be derived in most of the cases.

[1]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[2]  M. Meckes On the spectral norm of a random Toeplitz matrix , 2007, math/0703134.

[3]  Arup Bose,et al.  Limiting Spectral Distribution of Circulant Type Matrices with Dependent Inputs , 2009 .

[4]  R. Rao,et al.  Normal Approximation and Asymptotic Expansions , 1976 .

[5]  Arnab Sen,et al.  Large dimensional random k circulants , 2009, 0903.0128.

[6]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[7]  A. M. Walker Some asymptotic results for the periodogram of a stationary time series , 1965, Journal of the Australian Mathematical Society.

[8]  Kenneth Lange,et al.  Applied Probability , 2003 .

[9]  D. Pollock,et al.  Circulant matrices and time-series analysis , 2000 .

[10]  Arup Bose,et al.  Another look at the moment method for large dimensional random matrices , 2008 .

[11]  Richard A. Davis,et al.  The Maximum of the Periodogram of a Non-Gaussian Sequence , 1999 .

[12]  Zhengyan Lin,et al.  On maxima of periodograms of stationary processes , 2008, 0801.1357.

[13]  A. Mukherjea,et al.  Identification of the Parameters of a Multivariate Normal Vector by the Distribution of the Maximum , 2001 .

[14]  Jianqing Fan,et al.  Parametric Nonlinear Time Series Models , 2003 .

[15]  Mark W. Meckes,et al.  Some results on random circulant matrices , 2009, 0902.2472.

[16]  Arup Bose,et al.  Limiting spectral distribution of a special circulant , 2002 .

[17]  M. Brewer With comments by , 2008 .

[18]  U. Einmahl,et al.  Extensions of results of Komlo´s, Major, and Tusna´dy to the multivariate case , 1989 .

[19]  J. W. Silverstein THE SPECTRAL RADII AND NORMS OF LARGE DIMENSIONAL NON-CENTRAL RANDOM MATRICES , 1994 .

[20]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[21]  W. Bryc,et al.  A remark on the maximum eigenvalue for circulant matrices , 2009 .

[22]  Jianqing Fan Nonlinear Time Series , 2003 .

[23]  Sidney I. Resnick,et al.  Tail equivalence and its applications , 1971, Journal of Applied Probability.

[24]  Arup Bose,et al.  Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices , 2007 .

[25]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .

[26]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[27]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[28]  Steven J. Miller,et al.  Distribution of Eigenvalues for the Ensemble of Real Symmetric Toeplitz Matrices , 2005 .

[29]  Z. Bai,et al.  METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .

[30]  R. Adamczak,et al.  A Few Remarks on the Operator Norm of Random Toeplitz Matrices , 2008, 0803.3111.