Classical spin theory

Tensor and vector equations of motion of a classical charged particle with spin have been derived within the framework of the special theory of relativity on the basis of Frenkel's tensor. The anomalous magnetic moment of the particle is considered in a natural manner in deriving the equations. The expression for the forces acting on the particle is constructed with consideration of the effect of spin on the motion trajectory. The spin equations proved to coincide with those obtained previously by Nyborg and Good. The properties of these equations have been studied, and it has been shown that the various equations are in fact variant forms of one and the same equation. In the absence of an anomalous magnetic moment the tensor equation coincides with Frenkel's spin equation, and in the same situation the vector equation transforms to the equation obtained by Tamm. In the special case of homogeneous fields the vector equation coincides with the well-known Bargmann-Michel-Telegdi equation. In conclusion we present spin motion equations for a particle with electric and magnetic charges.

[1]  Evgenii Mikhailovich Lifshitz,et al.  Relativistic quantum theory , 1971 .

[2]  J. Horváth Die Bewegungsgleichungen des Elektrons , 1954 .

[3]  P. Nyborg On classical theories of spinning particles , 1962 .

[4]  F. Halbwachs,et al.  Théorie relativiste des Fluides à Spin , 1961 .

[5]  R. A. Mann 1 – CLASSICAL DYNAMICS OF PARTICLES , 1974 .

[6]  J. Bernstein,et al.  Particles, Sources and Fields , 1971 .

[7]  E. Thorndike,et al.  Resonant Depolarization of a Beam of Polarized Protons During Acceleration in a Synchrocyclotron , 1962 .

[8]  R. Good,et al.  Electron Polarization Operators , 1961 .

[9]  P. Dirac Quantised Singularities in the Electromagnetic Field , 1931 .

[10]  V. L. Telegdi,et al.  Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field , 1959 .

[11]  M. Kolsrud Covariant and hermitian semi-classical limit of quantum dynamical equations for spin-1/2 particles , 1965 .

[12]  J. Kupersztych,et al.  Is there a link between gauge invariance, relativistic invariance and electron spin? , 1976 .

[13]  R. Schiller,et al.  Classical Motions of Spin- 1/2 Particles , 1964 .

[14]  H. C. Corben Spin in Classical and Quantum Theory , 1961 .

[15]  Ig. Tamm,et al.  Zur Elektrodynamik des rotierenden Elektrons , 1929 .

[16]  A. Solomon Motion of a particle with spin in a nonhomogeneous electromagnetic field , 1962 .

[17]  J. Frenkel,et al.  Die Elektrodynamik des rotierenden Elektrons , 1926 .

[18]  R. Good,et al.  Tensor operator for electron polarization , 1961 .

[19]  R. Good Classical Equations of Motion for a Polarized Particle in an Electromagnetic Field , 1962 .

[20]  K. Rafanelli Observable particle motions , 1970 .

[21]  P. Lu The classical description of a neutron scattered by a Coulomb potential , 1967 .

[22]  S. I. Rubinow,et al.  Asymptotic Solution of the Dirac Equation , 1963 .

[23]  M. Froissart,et al.  Depolarization of a beam of polarized protons in a synchrotron , 1960 .

[24]  H. Kramers On the classical theory of the spinning electron , 1934 .

[25]  S. Ciccariello An explicit solution of the bargman-michel-telegdi equation for the polarization in a magnetic field , 1965 .

[26]  H. Bacry Thomas’s classical theory of spin , 1962 .

[27]  V. Bargmann,et al.  Group Theoretical Discussion of Relativistic Wave Equations. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[29]  L. H. Thomas The Motion of the Spinning Electron , 1926, Nature.

[30]  SPIN AND ORBITAL MOTIONS OF A PARTICLE IN A HOMOGENEOUS MAGNETIC FIELD. , 1969 .

[31]  A. Charkrabarti Exact solution of the Dirac-Pauli equation for a class of fields: Precession of polarization , 1968 .

[32]  J. Sniatycki The classical motion of spin-1 particles , 1965 .

[33]  J. Wesley,et al.  The current status of the lepton g factors , 1972 .

[34]  P. Nyborg Thomas precession and classical theories of spinning particles , 1962 .

[35]  L. G. Suttorp,et al.  Covariant equations of motion, for a charged particle with a magnetic dipole moment , 1970 .

[36]  J. Schwinger Spin Precession—A Dynamical Discussion , 1974 .

[37]  R. Stora,et al.  Depolarisation d'un faisceau de protons polarises dans un synchrotron , 1960 .

[38]  J. Hilgevoord,et al.  On the spin angular momentum of the Dirac particle , 1963 .