Estimating FPAR of maize canopy using airborne discrete-return LiDAR data.

The fraction of absorbed photosynthetically active radiation (FPAR) is a key parameter for ecosystem modeling, crop growth monitoring and yield prediction. Ground-based FPAR measurements are time consuming and labor intensive. Remote sensing provides an alternative method to obtain repeated, rapid and inexpensive estimates of FPAR over large areas. LiDAR is an active remote sensing technology and can be used to extract accurate canopy structure parameters. A method to estimating FPAR of maize from airborne discrete-return LiDAR data was developed and tested in this study. The raw LiDAR point clouds were processed to separate ground returns from vegetation returns using a filter method over a maize field in the Heihe River Basin, northwest China. The fractional cover (fCover) of maize canopy was computed using the ratio of canopy return counts or intensity sums to the total of returns or intensities. FPAR estimation models were established based on linear regression analysis between the LiDAR-derived fCover and the field-measured FPAR (R(2) = 0.90, RMSE = 0.032, p < 0.001). The reliability of the constructed regression model was assessed using the leave-one-out cross-validation procedure and results show that the regression model is not overfitting the data and has a good generalization capability. Finally, 15 independent field-measured FPARs were used to evaluate accuracy of the LiDAR-predicted FPARs and results show that the LiDAR-predicted FPAR has a high accuracy (R(2) = 0.89, RMSE = 0.034). In summary, this study suggests that the airborne discrete-return LiDAR data could be adopted to accurately estimate FPAR of maize.

[1]  E. Næsset Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data , 2009 .

[2]  K. Itten,et al.  Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization , 2007 .

[3]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[4]  Felix Morsdorf,et al.  Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling , 2009 .

[5]  Xiaohuan Xi,et al.  Retrieving leaf area index using ICESat/GLAS full-waveform data , 2013 .

[6]  Antero Kukko,et al.  Effect of incidence angle on laser scanner intensity and surface data. , 2008, Applied optics.

[7]  Martin Kappas,et al.  Modeling Net Ecosystem Exchange for Grassland in Central Kazakhstan by Combining Remote Sensing and Field Data , 2009, Remote. Sens..

[8]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[9]  L. Monika Moskal,et al.  Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .

[10]  Matti Maltamo,et al.  Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index , 2011 .

[11]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[12]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[13]  Emilio Chuvieco,et al.  Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests , 2004 .

[14]  J. Hicke,et al.  Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery , 2012 .

[15]  S. Nilsson,et al.  Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000 , 2010 .

[16]  Peter M. Atkinson,et al.  Three-dimensional mapping of light transmittance and foliage distribution using lidar , 2003 .

[17]  C. Daughtry,et al.  Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies , 1992 .

[18]  R. Jackson,et al.  Multisite Analyses of Spectral-Biophysical Data for Wheat , 1992 .

[19]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[20]  J. Goudriaan,et al.  Monitoring rice reflectance at field level for estimating biomass and LAI , 1998 .

[21]  Pol Coppin,et al.  3D modeling of light interception in heterogeneous forest canopies using ground-based LiDAR data , 2011, International Journal of Applied Earth Observation and Geoinformation.

[22]  Y. Knyazikhin,et al.  Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests , 2003 .

[23]  S. T. Gower,et al.  Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems , 1999 .

[24]  R. Fensholt,et al.  Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements , 2004 .

[25]  K. Weber,et al.  Comparison of MODIS fPAR Products with Landsat-5 TM-Derived fPAR over Semiarid Rangelands of Idaho , 2010 .

[26]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[27]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[28]  M. Monsi Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion , 1953 .

[29]  L. Monika Moskal,et al.  Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR , 2009 .

[30]  J. Suomalainen,et al.  Full waveform hyperspectral LiDAR for terrestrial laser scanning. , 2012, Optics express.

[31]  K. Clint Slatton,et al.  Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  Farhad Samadzadegan,et al.  Information fusion of Lidar range and intensity data for automatic building recognition , 2011 .

[33]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[34]  M. Neteler,et al.  Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps , 2011 .

[35]  C. Hopkinson,et al.  Testing LiDAR models of fractional cover across multiple forest ecozones , 2009 .

[36]  Laura Chasmer,et al.  A lidar-based hierarchical approach for assessing MODIS fPAR , 2008 .

[37]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[38]  Shunlin Liang,et al.  Mapping incident photosynthetically active radiation from MODIS data over China , 2008 .

[39]  Andrew T. Hudak,et al.  Discrete return lidar-based prediction of leaf area index in two conifer forests , 2008 .

[40]  Cheng Wang,et al.  Separation of Ground and Low Vegetation Signatures in LiDAR Measurements of Salt-Marsh Environments , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[41]  K. C. Slatton,et al.  Prediction of forest canopy light interception using three‐dimensional airborne LiDAR data , 2009 .

[42]  W. Cohen,et al.  Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest , 2005 .

[43]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Bing Zhang,et al.  Seasonal dynamic pattern analysis on global FPAR derived from AVHRR GIMMS NDVI , 2012, Int. J. Digit. Earth.

[45]  Valerie A. Thomas,et al.  Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data , 2012 .

[46]  J. Tenhunen,et al.  On the relationship of NDVI with leaf area index in a deciduous forest site , 2005 .

[47]  Guoqing Sun,et al.  Forest biomass mapping from lidar and radar synergies , 2011 .

[48]  Randolph H. Wynne,et al.  Fusion of Small-Footprint Lidar and Multispectral Data to Estimate Plot- Level Volume and Biomass in Deciduous and Pine Forests in Virginia, USA , 2004, Forest Science.

[49]  S. Gower,et al.  Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence , 2013 .

[50]  F. M. Danson,et al.  Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .

[51]  R. Lacaze,et al.  Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption , 2003 .

[52]  Svein Solberg,et al.  Mapping gap fraction, LAI and defoliation using various ALS penetration variables , 2010 .

[53]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[54]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[55]  Maria Antonia Brovelli,et al.  Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method , 2008 .

[56]  Stéphane Dupuy,et al.  Characterization of the horizontal structure of the tropical forest canopy using object-based LiDAR and multispectral image analysis , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[57]  Erik Næsset,et al.  Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations , 2009 .

[58]  Isabel Luisa Castillejo-González,et al.  Combining LiDAR intensity with aerial camera data to discriminate agricultural land uses , 2012 .

[59]  Ranga B. Myneni,et al.  Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements , 2008 .

[60]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[61]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[62]  Zheng Niu,et al.  Range determination for generating point clouds from airborne small footprint LiDAR waveforms. , 2012, Optics express.

[63]  Kaiguang Zhao,et al.  Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA , 2009 .

[64]  Valerie A. Thomas,et al.  Spatial modelling of the fraction of photosynthetically active radiation absorbed by a boreal mixedwood forest using a lidar–hyperspectral approach , 2006 .