SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

We report the detection of a cold Neptune m(planet) = 21 +/- 2M(circle plus) orbiting a 0.38M(circle dot) M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow. up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near. to. mid-disk and are clearly not in the Galactic bulge.

K. Ulaczyk | R. A. Street | I. A. Steele | M. I. Andersen | Keith Horne | K. Masuda | J. Southworth | M. Dominik | J. Surdej | S. Calchi Novati | G. Scarpetta | U. G. Jorgensen | J. Skottfelt | C. von Essen | E. Bachelet | Y. Itow | D. J. Sullivan | To. Saito | A. Udalski | S. Kozlowski | A. Bhattacharya | I. A. Bond | M. Donachie | M. Freeman | Y. Hirao | N. Koshimoto | C. H. Ling | M. Nagakane | H. Oyokawa | A. Sharan | A. Yonehara | D. M. Bramich | A. Cassan | R. Figuera Jaimes | C. Ranc | C. Snodgrass | J. Wambsganss | V. Bozza | M. J. Burgdorf | S. Ciceri | G. D'Ago | T. C. Hinse | A. Popovas | M. Rabus | S. Rahvar | E. Unda-Sanzana | H. Korhonen | D. Suzuki | R. Poleski | B. S. Gaudi | L. Mancini | D. F. Evans | J. Skowron | M. K. Szymanski | G. Pietrzynski | I. Soszynski | M. Pawlak | P. Pietrukowicz | S. Carey | Y. Shvartzvald | D. P. Bennett | E. Kerins | G. Scarpetta | E. Bachelet | B. Gaudi | D. Bennett | R. Poleski | R. Street | K. Ulaczyk | M. Burgdorf | J. Surdej | S. Dong | J. Wambsganss | M. Pawlak | R. Pogge | J. Menzies | I. Steele | W. Zhu | L. Mancini | D. Bramich | S. Carey | U. Jørgensen | K. Horne | M. Dominik | J. Skottfelt | S. Ciceri | A. Fukui | F. Abe | S. Rahvar | A. Udalski | M. Szymański | C. Snodgrass | E. Unda-Sanzana | N. Peixinho | C. Henderson | M. Rabus | H. Korhonen | O. Wertz | V. Bozza | T. Hinse | M. Hundertmark | N. Kains | R. Schmidt | J. Southworth | P. Pietrukowicz | J. Skowron | S. Kozłowski | L. Wyrzykowski | I. Soszyński | S. Mao | D. Sullivan | M. Andersen | Y. Itow | Y. Matsubara | Y. Muraki | H. Park | S. Gu | Y. Tsapras | A. Gould | J. Yee | Y. Jung | I. Shin | Y. Shvartzvald | P. Verma | K. Masuda | C. .. Essen | Y. Matsubara | Y. Muraki | L. Wyrzykowski | F. Abe | A. Gould | T. Sumi | O. Wertz | G. D’ago | P. | T. Sumi | I. Bond | N. Rattenbury | A. Cassan | K. Ohnishi | M. Freeman | D. Suzuki | R. W. Pogge | Y. K. Jung | I.-G. Shin | E. Kerins | A. Yonehara | A. Fukui | K. Ohnishi | N. Rattenbury | N. Kains | J. Menzies | Y. Tsapras | Subo Dong | MiNDSTEp Consortium | W. Zhu | M. Kuffmeier | C. Ranc | A. Bhattacharya | Y. Hirao | N. Koshimoto | The Moa Collaboration | G. Bryden | H. Park | N. Peixinho | S. Mao | G. Bryden | P. Mroz | R. Schmidt | M. Kuffmeier | R. T. Rasmussen | K. Inayama | Y. Wakiyama | Y. Asakura | D. Evans | R. Jaimes | A. Popovas | Yi‐Bo Wang | A. Sharan | Sheng-hong Gu | Y. Asakura | M.C.A. Li | M. Donachie | M. Nagakane | J.-Y.Choi | P. Verma | M.P.G. Hundertmark | J. Yee | The RoboNet Project | H. Harkonnen | R. Tronsgaard Rasmussen | Yi-Bo. Wang | The OGLE Project | The Spitzer Team C. Beichman | C. Henderson | The MOA Collaboration | T. Nishioka | J. Tristram | KMTNet Modeling Team C. Han | P. Mróz | M. Li | Kyong Chol Han | H. Oyokawa | T. Nishioka | Y. Wakiyama | K. Inayama | G. Pietrzyński | J. Tristram | S. C. Novati | T. Saito | MiNDSTEp Consortium | H. Harkonnen | The Ogle Project

[1]  Jean Surdej,et al.  Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations , 2010 .

[2]  Andrew Gould Theory of Pixel Lensing , 1995 .

[3]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[4]  K. Ulaczyk,et al.  Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006 .

[5]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[6]  Andrew Gould,et al.  KEPLER-LIKE MULTI-PLEXING FOR MASS PRODUCTION OF MICROLENS PARALLAXES , 2013, 1310.4208.

[7]  V. Bozza,et al.  Microlensing with an advanced contour integration algorithm: Green's theorem to third order, error control, optimal sampling and limb darkening , 2010, 1004.2796.

[8]  N. Rattenbury Microlensing of close binary stars , 2008, 0810.2265.

[9]  C. H. Ling,et al.  MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET , 2008, 0809.2997.

[10]  R. Street,et al.  Difference image analysis: extension to a spatially varying photometric scale factor and other considerations , 2012, 1210.2926.

[11]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[12]  M. Penny,et al.  PLANET SENSITIVITY FROM COMBINED GROUND- AND SPACE-BASED MICROLENSING OBSERVATIONS , 2015, 1508.03336.

[13]  X. Wu,et al.  DELAYED ENERGY INJECTION MODEL FOR GAMMA-RAY BURST AFTERGLOWS , 2013, 1307.4517.

[14]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[15]  K. Ulaczyk,et al.  PATHWAY TO THE GALACTIC DISTRIBUTION OF PLANETS: COMBINED SPITZER AND GROUND-BASED MICROLENS PARALLAX MEASUREMENTS OF 21 SINGLE-LENS EVENTS , 2014, 1411.7378.

[16]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[17]  K. Ulaczyk,et al.  First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001 , 2007, astro-ph/0702240.

[18]  B. Gaudi,et al.  Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343 , 2005, astro-ph/0507079.

[19]  F. Grundahl,et al.  The two-colour EMCCD instrument for the Danish 1.54 m telescope and SONG , 2014, 1411.7401.

[20]  K. Ulaczyk,et al.  FIRST SPACE-BASED MICROLENS PARALLAX MEASUREMENT OF AN ISOLATED STAR: SPITZER OBSERVATIONS OF OGLE-2014-BLG-0939 , 2014, 1410.5429.

[21]  Andrew Gould,et al.  MACHO Velocities from Satellite-based Parallaxes , 1994 .

[22]  C. H. Ling,et al.  MOA 2010-BLG-477Lb: CONSTRAINING THE MASS OF A MICROLENSING PLANET FROM MICROLENSING PARALLAX, ORBITAL MOTION, AND DETECTION OF BLENDED LIGHT , 2012, 1205.6323.

[23]  R. A. Street,et al.  FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.

[24]  S. Fujibayashi,et al.  NUCLEOSYNTHESIS IN NEUTRINO-DRIVEN WINDS IN HYPERNOVAE , 2015, 1507.05945.

[25]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[26]  Andrew Gould,et al.  A Natural Formalism for Microlensing , 2000, astro-ph/0001421.

[27]  Andrew Gould MACHO Parallaxes from a Single Satellite , 1995 .

[28]  Andrew Gould,et al.  SYSTEMATIC ANALYSIS OF 22 MICROLENSING PARALLAX CANDIDATES , 2005, astro-ph/0506183.

[29]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[30]  B. Gaudi,et al.  SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS , 2015, 1509.00037.

[31]  A. Gould Galactic Distribution of Planets , 2010 .

[32]  Colin Snodgrass,et al.  A metric and optimization scheme for microlens planet searches , 2009, 0901.0846.

[33]  S. Refsdal,et al.  On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .

[34]  Kaspar von Braun,et al.  STELLAR DIAMETERS AND TEMPERATURES. IV. PREDICTING STELLAR ANGULAR DIAMETERS , 2013, 1311.4901.

[35]  A. Gould,et al.  MICROLENS MASSES FROM ASTROMETRY AND PARALLAX IN SPACE-BASED SURVEYS: FROM PLANETS TO BLACK HOLES , 2014, 1401.2463.

[36]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[37]  K. Ulaczyk,et al.  SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS AND DISTANCE MEASUREMENTS OF BINARY LENS SYSTEM OGLE-2014-BLG-1050L , 2015, 1501.04107.

[38]  M. Livio,et al.  Stellar Proper Motions in the Galactic Bulge from Deep Hubble Space Telescope ACS WFC Photometry , 2008, 0809.1682.

[39]  K. Ulaczyk,et al.  SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS MEASUREMENT FOR THE OGLE-2014-BLG-0124L PLANET AND ITS HOST STAR , 2014, 1410.4219.

[40]  F. Grundahl,et al.  High frame rate imaging based photometry - Photometric reduction of data from electron-multiplying charge coupled devices (EMCCDs) , 2012, 1202.3814.

[41]  A. Gal-Yam,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - V. Evidence for a wide age distribution and a complex MDF , 2012, 1211.6848.

[42]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[43]  Neda Safizadeh,et al.  The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets , 1997 .

[44]  F. Thevenin,et al.  The angular sizes of dwarf stars and subgiants Surface brightness relations calibrated by interferometry , 2004, astro-ph/0404180.

[45]  Andrew Gould,et al.  Satellite Parallaxes of Lensing Events toward the Galactic Bulge , 1996 .

[46]  P. J. Wheatley,et al.  ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search): a possible expert-system based cooperative effort to hunt for planets of Earth mass and below , 2008, 0801.2162.

[47]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.