Reduced Feedback MIMO-OFDM Precoding and Antenna Selection

Transmitter precoding for multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) is an effective way of leveraging the diversity gains afforded by a multiple-transmit multiple-receive antenna system in a frequency selective environment. In the limited feedback scenario, optimal precoder representation for narrowband MIMO systems using moderately sized codebooks designed on the Grassmann manifold has been shown to perform remarkably well. In MIMO-OFDM systems, precoder matrices have to be designed for all subcarriers and the amount of feedback can get prohibitively large. This is especially true for next generation wireless local area networks and wireless metropolitan area networks which have a large number of subcarriers. In this paper, we present techniques to reduce this feedback requirement and the performance of these algorithms is numerically shown to provide improvement over existing schemes

[1]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[2]  Robert W. Heath,et al.  Blind channel identification and equalization in OFDM-based multiantenna systems , 2002, IEEE Trans. Signal Process..

[3]  Anna Scaglione,et al.  Optimal designs for space-time linear precoders and decoders , 2002, IEEE Trans. Signal Process..

[4]  Edward J. Powers,et al.  Blind channel estimation for MIMO-OFDM systems using virtual carriers , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[5]  Jonathan M. Borwein,et al.  Dictionary of mathematics , 1989 .

[6]  Anuj Srivastava,et al.  Analysis of planar shapes using geodesic paths on shape spaces , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Robert W. Heath,et al.  Interpolation Based Unitary Precoding for Spatial Multiplexing MIMO-OFDM With Limited Feedback , 2006, IEEE Trans. Signal Process..

[8]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[9]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .

[10]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[11]  R. Heath,et al.  Limited feedback unitary precoding for spatial multiplexing systems , 2005, IEEE Transactions on Information Theory.

[12]  Douglas B. Williams,et al.  MIMO transmission subspace tracking with low rate feedback , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[13]  G.B. Giannakis,et al.  Quantifying the power loss when transmit beamforming relies on finite-rate feedback , 2005, IEEE Transactions on Wireless Communications.

[14]  Robert W. Heath,et al.  Interpolation based transmit beamforming for MIMO-OFDM with limited feedback , 2004, IEEE Transactions on Signal Processing.

[15]  Amir K. Khandani,et al.  A new method of channel feedback quantization for high data rate MIMO systems , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[16]  Edgar Bolinth,et al.  A blockwise loading algorithm for the adaptive modulation technique in OFDM systems , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[17]  Roger P. Woods,et al.  Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation , 2003, NeuroImage.

[18]  Sumei Sun,et al.  Training sequence assisted channel estimation for MIMO OFDM , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[19]  Robert W. Heath,et al.  Grassmannian beamforming for multiple-input multiple-output wireless systems , 2003, IEEE Trans. Inf. Theory.

[20]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[21]  Gene H. Golub,et al.  Matrix computations , 1983 .

[22]  Mikael Skoglund,et al.  Quantized feedback information in orthogonal space-time block coding , 2004, IEEE Transactions on Information Theory.

[23]  Robert W. Heath,et al.  Transmit selection in spatial multiplexing systems , 2002, IEEE Communications Letters.

[24]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[25]  M. Honig,et al.  Asymptotic performance of MIMO wireless channels with limited feedback , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[26]  Elza Erkip,et al.  On beamforming with finite rate feedback in multiple-antenna systems , 2003, IEEE Trans. Inf. Theory.

[27]  Athina P. Petropulu,et al.  Blind channel estimation in MIMO OFDM systems , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[28]  Aria Nosratinia,et al.  Antenna selection in MIMO systems , 2004, IEEE Communications Magazine.

[29]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[30]  Marc Moonen,et al.  Optimal training design for MIMO OFDM systems in mobile wireless channels , 2003, IEEE Trans. Signal Process..

[31]  Jonathan H. Manton,et al.  A globally convergent numerical algorithm for computing the centre of mass on compact Lie groups , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[32]  T.Y. Al-Naffouri Receiver design for MIMO OFDM transmission over time variant channels , 2007, 2007 IEEE 8th Workshop on Signal Processing Advances in Wireless Communications.

[33]  Hlaing Minn,et al.  Optimal training signals for MIMO OFDM channel estimation , 2006, IEEE Trans. Wirel. Commun..

[34]  Rick S. Blum,et al.  On optimum MIMO with antenna selection , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[35]  Dimitri Nowicki,et al.  Averaging on Riemannian manifolds and unsupervised learning using neural associative memory , 2005, ESANN.

[36]  Robert W. Heath,et al.  Limited feedback unitary precoding for orthogonal space-time block codes , 2005, IEEE Transactions on Signal Processing.

[37]  Arogyaswami Paulraj,et al.  MIMO antenna subset selection with space-time coding , 2002, IEEE Trans. Signal Process..

[38]  Moe Z. Win,et al.  Capacity of MIMO systems with antenna selection , 2001, IEEE Transactions on Wireless Communications.

[39]  K.A. Gallivan,et al.  Efficient algorithms for inferences on Grassmann manifolds , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[40]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[41]  Douglas B. Williams,et al.  Transmission Subspace Tracking for MIMO Systems With Low-Rate Feedback , 2007, IEEE Transactions on Communications.

[42]  A.F. Molisch,et al.  MIMO systems with antenna selection , 2004, IEEE Microwave Magazine.

[43]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[44]  Robert W. Heath,et al.  Antenna selection for spatial multiplexing systems with linear receivers , 2001, IEEE Communications Letters.

[45]  Erik G. Larsson,et al.  On the performance of orthogonal space-time block coding with quantized feedback , 2002, IEEE Communications Letters.

[46]  Bhaskar D. Rao,et al.  Transmit beamforming in multiple-antenna systems with finite rate feedback: a VQ-based approach , 2006, IEEE Transactions on Information Theory.

[47]  Thomas L. Marzetta,et al.  Systematic design of unitary space-time constellations , 2000, IEEE Trans. Inf. Theory.

[48]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[49]  Alexander Barg,et al.  Bounds on packings of spheres in the Grassmann manifold , 2002, IEEE Trans. Inf. Theory.

[50]  Gregory W. Wornell,et al.  Efficient use of side information in multiple-antenna data transmission over fading channels , 1998, IEEE J. Sel. Areas Commun..

[51]  J.V. Krogmeier,et al.  A Weighted Least Squares Approach to Precoding With Pilots for MIMO-OFDM , 2006, IEEE Transactions on Signal Processing.