Fast estimation of multilook K-distribution parameters via the least-squares nonlinear curve-fitting

In this paper the author propose a fast and efficient algorithm for multilook K-distribution parameter estimation. It is base on the approximate inverse function of log(ν) − ψ(ν), which is calculated by the least squares nonlinear curve fitting technique. Numerical experiments demonstrate the efficiency and accuracy of this new algorithm.

[1]  Donald B. Percival,et al.  Maximum likelihood estimation of K distribution parameters for SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[2]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[3]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[4]  Abdelhak M. Zoubir,et al.  Estimating the parameters of K-distribution using higher-order and fractional moments , 1999 .

[5]  D. Blacknell,et al.  Accurate approximation to the optimum parameter estimate for K-distributed clutter , 1996 .

[6]  Simon Watts,et al.  Statistical models of sea clutter , 2006 .

[7]  Pei Jung Chung,et al.  Recursive K-distribution parameter estimation , 2005, IEEE Transactions on Signal Processing.

[8]  P M Shankar,et al.  Use of the K-distribution for classification of breast masses. , 2000, Ultrasound in medicine & biology.

[9]  Abdelhak M. Zoubir,et al.  Estimation of the Parameters of the K-distributed Using Higher Order and Fractional Moments , 1999 .

[10]  Abdelhak M. Zoubir,et al.  Estimation of the parameters of the K-distribution using higher order and fractional moments [radar clutter] , 1999 .

[11]  K. Ward,et al.  Sea clutter: Scattering, the K distribution and radar performance , 2007 .

[12]  Sadaoki Furui,et al.  Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm , 2000, IEEE Trans. Signal Process..

[13]  David Durand,et al.  Aids for Fitting the Gamma Distribution by Maximum Likelihood , 1960 .

[14]  D. Blacknell,et al.  Parameter estimation for the K-distribution based on [z log(z)] , 2001 .

[15]  E. Jakeman,et al.  A model for non-Rayleigh sea echo , 1976 .

[16]  R. S. Raghavan,et al.  A method for estimating parameters of K-distributed clutter , 1991 .

[17]  C. Oliver Optimum texture estimators for SAR clutter , 1993 .

[18]  Douglas A. Abraham,et al.  Signal excess in K-distributed reverberation , 2003 .

[19]  D. Blacknell,et al.  Comparison of parameter estimators for K-distribution , 1994 .

[20]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. , 1993 .