Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC

The cosmological constant problem is a failure of naturalness and suggests that a fine-tuning mechanism is at work, which may also address the hierarchy problem. An example — supported by Weinberg's successful prediction of the cosmological constant — is the potentially vast landscape of vacua in string theory, where the existence of galaxies and atoms is promoted to a vacuum selection criterion. Then, low energy SUSY becomes unnecessary, and supersymmetry — if present in the fundamental theory — can be broken near the unification scale. All the scalars of the supersymmetric standard model become ultraheavy, except for a single finely tuned Higgs. Yet, the fermions of the supersymmetric standard model can remain light, protected by chiral symmetry, and account for the successful unification of gauge couplings. This framework removes all the difficulties of the SSM: the absence of a light Higgs and sparticles, dimension five proton decay, SUSY flavor and CP problems, and the cosmological gravitino and moduli problems. High-scale SUSY breaking raises the mass of the light Higgs to ~ 120−150 GeV. The gluino is strikingly long lived, and a measurement of its lifetime can determine the ultraheavy scalar mass scale. Measuring the four Yukawa couplings of the Higgs to the gauginos and higgsinos precisely tests for high-scale SUSY. These ideas, if confirmed, will demonstrate that supersymmetry is present but irrelevant for the hierarchy problem — just as it has been irrelevant for the cosmological constant problem — strongly suggesting the existence of a fine-tuning mechanism in nature.

[1]  Hu,et al.  Thermalization constraints and spectral distortions for massive unstable relic particles. , 1993, Physical review letters.

[2]  N. Sakai,et al.  Naturalnes in supersymmetric GUTS , 1981 .

[3]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[4]  M. Dine,et al.  A supersymmetric gut , 1982 .

[5]  Savas Dimopoulos,et al.  Softly Broken Supersymmetry and SU(5) , 1981 .

[6]  E. Silverstein,et al.  De Sitter Space In Non-Critical String Theory , 2002, hep-th/0205316.

[7]  Quantization of four-form fluxes and dynamical neutralization of the cosmological constant , 2000, hep-th/0004134.

[8]  Predictions from quantum cosmology. , 1994, Physical review letters.

[9]  Gaugino mediated supersymmetry breaking , 1999, hep-ph/9911323.

[10]  郡 和範 Hadronic decay of late-decaying particles and big-bang nucleosynthesis , 2005 .

[11]  A. Nelson,et al.  The Littlest Higgs , 2002, hep-ph/0206021.

[12]  The statistics of string/M theory vacua , 2003, hep-th/0303194.

[13]  Steven Weinberg,et al.  Implications of Dynamical Symmetry Breaking , 1976 .

[14]  Edward Witten,et al.  Heterotic and type I string dynamics from eleven-dimensions , 1995, hep-th/9510209.

[15]  D. Whiteson,et al.  Combination of CDF and D0 results on the top-quark mass , 2005 .

[16]  J. Lykken,et al.  Supergravity as the messenger of supersymmetry breaking , 1983 .

[17]  J. Ellis,et al.  No-scale supersymmetric GUTs , 1984 .

[18]  Hadronic decay of late-decaying particles and big-bang nucleosynthesis , 2004, astro-ph/0402490.

[19]  T. Banks Cosmological breaking of supersymmetry , 2000 .

[20]  S. Dimopoulos,et al.  THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NEW DIMENSIONS AT A MILLIMETER TO A FERMI AND SUPERSTRINGS AT A TeV , 2005 .

[21]  F. Wilczek,et al.  Supersymmetry and the Scale of Unification , 1981 .

[22]  N. Arkani-Hamed,et al.  The Minimal Moose for a Little Higgs , 2002 .

[23]  Jonathan L. Feng,et al.  The light Higgsino-gaugino window , 1995, hep-ph/9511324.

[24]  Giovanni Ridolfi,et al.  Radiative corrections to the masses of supersymmetric Higgs bosons , 1991 .

[25]  S. Dimopoulos,et al.  Non-Local Modification of Gravity and the Cosmological Constant Problem , 2002, hep-th/0209227.

[26]  F. Denef,et al.  Distributions of flux vacua , 2004, hep-th/0404116.

[27]  Howard Georgi,et al.  Electroweak symmetry breaking from dimensional deconstruction , 2001, hep-ph/0105239.

[28]  Andrei Linde ETERNAL CHAOTIC INFLATION , 1986 .

[29]  The light gluino mass window revisited , 2003, hep-ph/0302076.

[30]  Polonsky,et al.  Strong coupling, unification, and recent data. , 1995, Physical review. D, Particles and fields.

[31]  M. Dine,et al.  A phenomenological model of particle physics based on supersymmetry , 1982 .

[32]  Weinberg,et al.  Anthropic bound on the cosmological constant. , 1987, Physical review letters.

[33]  J. D. Lewin,et al.  A search for anomalous hydrogen in enriched D2O, using a time-of-flight spectrometer , 1982 .

[34]  J. Gunion,et al.  Heavy gluino as the lightest supersymmetric particle , 1998, hep-ph/9806361.

[35]  Yasuhiro Okada,et al.  Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model , 1991 .

[36]  Savas Dimopoulos,et al.  The Hierarchy problem and new dimensions at a millimeter , 1998, hep-ph/9803315.

[37]  Saltatory relaxation of the cosmological constant , 2000, hep-th/0005276.

[38]  L. Susskind The Anthropic Landscape of String Theory , 2003, hep-th/0302219.

[39]  H. Haber,et al.  Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than mZ? , 1991, Physical review letters.

[40]  R. Barbieri,et al.  The supersymmetric Higgs for heavy superpartners , 1991 .

[41]  Low energy dynamical supersymmetry breaking simplified. , 1994, Physical review. D, Particles and fields.

[42]  Hitoshi Murayama,et al.  Gaugino mass without singlets , 1998 .

[43]  M. Einhorn,et al.  The weak mixing angle and unification mass in supersymmetric SU(5) , 1982 .

[44]  William J. Marciano,et al.  Predictions of supersymmetric grand unified theories , 1982 .

[45]  M. Rees Numerical Coincidences and `Tuning' in Cosmology , 2003, astro-ph/0401424.

[46]  T. Banks TCP, quantum gravity, the cosmological constant and all that... , 1985 .

[47]  Supersymmetry breaking through transparent extra dimensions , 1999, hep-ph/9911293.

[48]  New tools for low energy dynamical supersymmetry breaking. , 1995, Physical review. D, Particles and fields.

[49]  Towards an effective particle string resolution of the cosmological constant problem , 1997, hep-ph/9708329.

[50]  Combination of CDF and D0 Results on the Top-Quark Mass , 2004, hep-ex/0404010.

[51]  Lisa Randall,et al.  Out of this world supersymmetry breaking , 1999 .

[52]  James D. Wells Implications of Supersymmetry Breaking with a Little Hierarchy between Gauginos and Scalars , 2003 .

[53]  C. Hogan Why the Universe is Just So , 1999, astro-ph/9909295.

[54]  Leonard Susskind,et al.  Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory , 1979 .

[55]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[56]  J. Ellis,et al.  No-Scale Supersymmetric Standard Model , 1984 .

[57]  Antonio Delgado,et al.  RS1, custodial isospin and precision tests , 2003 .

[58]  Diluting the cosmological constant in infinite volume extra dimensions , 2002, hep-th/0202174.

[59]  Gould,et al.  Opening the window on strongly interacting dark matter. , 1990, Physical review. D, Particles and fields.

[60]  G. Starkman,et al.  Limits on Late Decaying Particles From Nucleosynthesis , 1989 .

[61]  S. P. Martin,et al.  Low-Scale and Gauge-Mediated Supersymmetry Breaking at the Fermilab Tevatron Run II , 2000, hep-ph/0008070.

[62]  S. Ferrara,et al.  Gauge models with spontaneously broken local supersymmetry , 1982 .

[63]  The standard model partly supersymmetric , 2003, hep-ph/0302001.

[64]  A. Strumia,et al.  The `LEP paradox' , 2000, hep-ph/0007265.

[65]  H. Goldberg,et al.  Constraint on the photino mass from cosmology , 1983 .

[66]  Lisa Randall,et al.  U(1)-R symmetric supersymmetry , 1991 .

[67]  M. Wise,et al.  Low-Energy Supersymmetry , 1982 .

[68]  The Anthropic principle and the mass scale of the standard model , 1997, hep-ph/9707380.

[69]  Graham G. Ross,et al.  Low-energy predictions in supersymmetric grand unified theories , 1981 .

[70]  J. Schwarz,et al.  How to get masses from extra dimensions , 1979 .

[71]  Savas Dimopoulos,et al.  Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity , 1998, hep-ph/9807344.

[72]  THEORETICAL PREDICTIONS FOR COLLIDER SEARCHES , 2003, hep-ph/0311344.

[73]  G. Giudice,et al.  A natural solution to the μ-problem in supergravity theories , 1988 .

[74]  David Sutter,et al.  The Supersymmetric flavor problem , 1995, hep-ph/9504415.

[75]  Shamit Kachru,et al.  De Sitter vacua in string theory , 2003, hep-th/0301240.