Progress in Developing a Structure‐Activity Relationship for the Direct Aromatization of Methane

To secure future supply of aromatics, methane is a commercially interesting alternative feedstock. Direct conversion of methane into aromatics combines the challenge of activating one of the strongest C−H bonds in all hydrocarbons with the selective aromatization over zeolites. To address these challenges, smart catalyst and process design are a must. And for that, understanding the most important factors leading to successful methane C−H bond activation and selective aromatization is needed. In this review, we summarize mechanistic insight that has been gained so far not only for this reaction, but also for other similar processes involving aromatization reactions over zeolites. With that, we highlight what can be learnt from similar processes. In addition, we provide an overview of characterization tools and strategies, which are useful to gain structural information about this particular metal‐zeolite system at reaction conditions. Here we also aim to inspire future characterization work, by giving an outlook on characterization strategies that have not yet been applied for the methane dehydroaromatization catalyst, but are promising for this system.

[1]  F. Kapteijn,et al.  Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process , 2018, Nature Chemistry.

[2]  B. Weckhuysen,et al.  Recent trends and fundamental insights in the methanol-to-hydrocarbons process , 2018, Nature Catalysis.

[3]  E. Hensen,et al.  Engineering of Transition Metal Catalysts Confined in Zeolites , 2018, Chemistry of materials : a publication of the American Chemical Society.

[4]  Freek Kapteijn,et al.  On the dynamic nature of Mo sites for methane dehydroaromatization† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc01263f , 2018, Chemical science.

[5]  W. Hui,et al.  Progress and prospects in catalytic ethane aromatization , 2018 .

[6]  Do Heui Kim,et al.  Effect of Si/Al2 ratios in Mo/H-MCM-22 on methane dehydroaromatization , 2018 .

[7]  F. Kapteijn,et al.  Relevance of the Mo-precursor state in H-ZSM-5 for methane dehydroaromatization , 2018 .

[8]  M. Fan,et al.  Progress in Nonoxidative Dehydroaromatization of Methane in the Last 6 Years , 2018 .

[9]  M. Fedin,et al.  Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM‐5 , 2017, Angewandte Chemie.

[10]  Kyoung‐Su Ha,et al.  Effects of hierarchical zeolites on aromatization of acetylene , 2017 .

[11]  R. Lobo,et al.  Ethane and ethylene aromatization on zinc-containing zeolites , 2017 .

[12]  L. Pinard,et al.  Effect of the metal promoter on the performances of H-ZSM5 in ethylene aromatization , 2017 .

[13]  E. Hensen,et al.  Nonoxidative Dehydroaromatization of Methane , 2017 .

[14]  F. Kapteijn,et al.  Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV–vis Spectroscopy , 2017, ACS catalysis.

[15]  L. Grabow,et al.  Silver‐Promoted Dehydroaromatization of Ethylene over ZSM‐5 Catalysts , 2017 .

[16]  Xinhe Bao,et al.  Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. , 2017, Chemical reviews.

[17]  D. Palagin,et al.  Selective anaerobic oxidation of methane enables direct synthesis of methanol , 2017, Science.

[18]  E. Hensen,et al.  Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration , 2017 .

[19]  Emiel J. M. Hensen,et al.  Methane Dehydroaromatization by Mo/HZSM-5: Mono- or Bifunctional Catalysis? , 2017 .

[20]  P. Cnudde,et al.  Effect of temperature and branching on the nature and stability of alkene cracking intermediates in H-ZSM-5 ☆ , 2017 .

[21]  J. Bokhoven,et al.  From Spectator Species to Active Site Using X-ray Absorption and Emission Spectroscopy Under Realistic Conditions , 2017 .

[22]  G. Lu,et al.  Performance of Fe-ZSM-5 for selective catalytic reduction of NOx with NH3: Effect of the atmosphere during the preparation of catalysts , 2016 .

[23]  Pengfei Wang,et al.  Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting , 2016 .

[24]  Andreas Martin,et al.  Synergy between vanadium and molybdenum in bimetallic ZSM-5 supported catalysts for ethylene ammoxidation , 2016 .

[25]  P. Tan Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane , 2016 .

[26]  F. Kapteijn,et al.  Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance , 2016 .

[27]  J. Gascón,et al.  Strategies for the direct catalytic valorization of methane using heterogeneous catalysis:challenges and opportunities , 2016 .

[28]  Stanley W Botchway,et al.  Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSM‐5 as Revealed by Operando X‐Ray Methods , 2016, Angewandte Chemie.

[29]  Christophe Copéret,et al.  Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. , 2016, Chemical reviews.

[30]  Mikhail Zhizhin,et al.  Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data , 2015 .

[31]  V. Abdelsayed,et al.  Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization , 2015 .

[32]  Yantao Shi,et al.  The Power of Single‐Atom Catalysis , 2015 .

[33]  Jianguo Wang,et al.  Influence of Zn species in HZSM-5 on ethylene aromatization , 2015 .

[34]  Prashant Kumar,et al.  Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets , 2015, Nature Communications.

[35]  Israel E. Wachs,et al.  Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion , 2015, Science.

[36]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[37]  K. Cheng,et al.  The role of carbon atoms of supported iron carbides in Fischer–Tropsch synthesis , 2015 .

[38]  R. Kee,et al.  Kinetic modeling of methane dehydroaromatization chemistry on Mo/Zeolite catalysts in packed-bed reactors , 2015 .

[39]  Peter A. Crozier,et al.  In situ and operando transmission electron microscopy of catalytic materials , 2015 .

[40]  Shirun Yan,et al.  ε-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst , 2014, Nature Communications.

[41]  Jianguo Wang,et al.  Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics , 2014 .

[42]  Yang Song,et al.  A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K , 2014 .

[43]  Ding Ma,et al.  Methane activation: the past and future , 2014 .

[44]  Hongjun Fan,et al.  Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen , 2014, Science.

[45]  A. Gabrienko,et al.  Methane Activation on In-Modified ZSM-5: The State of Indium in the Zeolite and Pathways of Methane Transformation to Surface Species , 2014 .

[46]  G. Hutchings,et al.  Catalytic aromatization of methane. , 2014, Chemical Society reviews.

[47]  R. Schlögl,et al.  Methane Activation by Heterogeneous Catalysis , 2014, Catalysis Letters.

[48]  Y. Sasaki,et al.  Atomic sites and stability of Cs+ captured within zeolitic nanocavities , 2013, Scientific Reports.

[49]  K. Pant,et al.  Direct conversion of natural gas to higher hydrocarbons: A review , 2013 .

[50]  V. Van Speybroeck,et al.  Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  X. Bao,et al.  Recent progress in methane dehydroaromatization: From laboratory curiosities to promising technology , 2013 .

[52]  A. Gabrienko,et al.  Methane Activation and Transformation on Ag/H-ZSM‑5 Zeolite Studied with Solid-State NMR , 2013 .

[53]  G. Marin,et al.  Methane aromatisation based upon elementary steps: Kinetic and catalyst descriptors , 2012 .

[54]  Bert M. Weckhuysen,et al.  Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. , 2012, Nature chemistry.

[55]  Unni Olsbye,et al.  Umwandlung von Methanol in Kohlenwasserstoffe: Wie Zeolith‐Hohlräume und Porengröße die Produktselektivität bestimmen , 2012 .

[56]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[57]  G. Hutchings,et al.  Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. , 2012, Angewandte Chemie.

[58]  M. Zheng,et al.  One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin , 2012 .

[59]  Danhong Zhou,et al.  Methane Dehydrogenation and Coupling to Ethylene over a Mo/HZSM-5 Catalyst: A Density Functional Theory Study , 2012 .

[60]  Juewen Liu,et al.  Characteristic and Mechanism of Methane Dehydroaromatization over Zn-Based/HZSM-5 Catalysts under Conditions of Atmospheric Pressure and Supersonic Jet Expansion , 2011 .

[61]  Agustín Martínez,et al.  Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores , 2011 .

[62]  T. Ressler,et al.  Structure of molybdenum oxide supported on silica SBA-15 studied by Raman, UV-Vis and X-ray absorption spectroscopy , 2011 .

[63]  J. Guan,et al.  Synthesis of Mo/IM-5 catalyst and its catalytic behavior in methane non-oxidative aromatization , 2011 .

[64]  J. Guan,et al.  Synthesis of Mo/TNU-9 (TNU-9 Taejon National University No. 9) catalyst and its catalytic performanc , 2011 .

[65]  Adriano Zecchina,et al.  Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. , 2010, Chemical Society reviews.

[66]  B. Gates,et al.  Supported rhenium complexes: almost uniform rhenium tricarbonyls synthesized from CH3Re(CO)5 and HY zeolite. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[67]  S. Scott,et al.  Wavelet transform EXAFS analysis of mono- and dimolybdate model compounds and a Mo/HZSM-5 dehydroaromatization catalyst. , 2010, Physical chemistry chemical physics : PCCP.

[68]  C. Copéret C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. , 2010, Chemical reviews.

[69]  Xiaoming Zheng,et al.  Energy-Efficient coaromatization of methane and propane , 2009 .

[70]  V. Van Speybroeck,et al.  Theoretical evaluation of zeolite confinement effects on the reactivity of bulky intermediates. , 2009, Physical chemistry chemical physics : PCCP.

[71]  Fernando Ramôa Ribeiro,et al.  Prevention of zeolite deactivation by coking , 2009 .

[72]  A. Corma,et al.  The confinement effect in zeolites , 2009 .

[73]  Zinfer R. Ismagilov,et al.  Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives , 2008 .

[74]  Wenjie Shen,et al.  Highly Dispersed Molybdenum Oxide Supported on HZSM-5 for Methane Dehydroaromatization , 2008 .

[75]  S. Norsic,et al.  Non-oxidative coupling reaction of methane to ethane and hydrogen catalyzed by the silica-supported tantalum hydride: ([triple bond]SiO)2Ta-H. , 2008, Journal of the American Chemical Society.

[76]  C. Pham‐Huu,et al.  Methane dehydro-aromatization on Mo/ZSM-5: About the hidden role of Brønsted acid sites , 2008 .

[77]  C. Peden,et al.  Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[78]  D. Doren,et al.  High-temperature dehydrogenation of Brønsted acid sites in zeolites. , 2008, Journal of the American Chemical Society.

[79]  J. Moulijn,et al.  Study of Methane Dehydroaromatization on Impregnated Mo/ZSM-5 Catalysts and Characterization of Nanostructured Molybdenum Phases and Carbonaceous Deposits , 2007 .

[80]  C. Au,et al.  Effects of acidification and basification of impregnating solution on the performance of Mo/HZSM-5 in methane aromatization , 2007 .

[81]  C. Au,et al.  XPS, XAES, and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga–Mo/ZSM-5 catalyst , 2007 .

[82]  C. Au,et al.  Methane dehydrogenation and aromatization over 4 wt% Mn/HZSM-5 in the absence of an oxidant , 2006 .

[83]  B. Gates,et al.  Oxide- and zeolite-supported molecular metal complexes and clusters: physical characterization and determination of structure, bonding, and metal oxidation state. , 2006, The journal of physical chemistry. B.

[84]  C. Pham‐Huu,et al.  Quantitative measurement of the Brönsted acid sites in solid acids: toward a single-site design of Mo-modified ZSM-5 zeolite. , 2006, The journal of physical chemistry. B.

[85]  X. Bao,et al.  Methane dehydroaromatization under nonoxidative conditions over Mo/HZSM-5 catalysts : Identification and preparation of the Mo active species , 2006 .

[86]  Hongmei Liu,et al.  H2-TPR Study on Mo/HZSM-5 Catalyst for CH4 Dehydroaromatization , 2006 .

[87]  X. Bao,et al.  Identification of Mo active species for methane dehydro-aromatization over Mo/HZSM-5 catalysts in the absence of oxygen: 1H MAS NMR and EPR investigations , 2006 .

[88]  K. Lillerud,et al.  Mechanistic insight into the methanol-to-hydrocarbons reaction , 2005 .

[89]  Q. Xin,et al.  The synergic effect between Mo species and acid sites in Mo/HMCM-22 catalysts for methane aromatization. , 2005, Physical chemistry chemical physics : PCCP.

[90]  J. F. Haw,et al.  Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis , 2005 .

[91]  Zili Wu,et al.  An IR study on the surface passivation of Mo2C/Al2O3 catalyst with O2, H2O and CO2 , 2004 .

[92]  Xin Chen,et al.  Identification of the coke accumulation and deactivation sites of Mo2C/HZSM-5 catalyst in CH4 dehydroaromatization , 2004 .

[93]  E. Pidko,et al.  DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: methane adsorption , 2004 .

[94]  J. Rasko,et al.  Infrared study of the adsorption of CO and CH3 on silica-supported MoO3 and Mo2C catalysts , 2003 .

[95]  Liwu Lin,et al.  Shape Selectivity in Methane Dehydroaromatization Over Mo/MCM-22 Catalysts During a Lifetime Experiment , 2003 .

[96]  T. Baba,et al.  Metal cation-acidic proton bifunctional catalyst for methane activation: conversion of 13CH4 in the presence of ethylene over metal cations-loaded H-ZSM-5 , 2003 .

[97]  X. Bao,et al.  Direct conversion of methane under nonoxidative conditions , 2003 .

[98]  Weiguo Song,et al.  The mechanism of methanol to hydrocarbon catalysis. , 2003, Accounts of chemical research.

[99]  Jean-Marie Basset,et al.  Homogene und heterogene Katalyse – Brückenschlag durch Oberflächen‐Organometallchemie , 2003 .

[100]  C. Copéret,et al.  Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. , 2003, Angewandte Chemie.

[101]  X. Bao,et al.  Towards guest-zeolite interactions: an NMR spectroscopic approach. , 2002, Chemistry.

[102]  Y. W. Li,et al.  Brønsted Acidity of Isomorphously Substituted ZSM-5 by B, Al, Ga, and Fe. Density Functional Investigations , 2002 .

[103]  G. Djéga-Mariadassou,et al.  Study of Residual Oxygen Species over Molybdenum Carbide Prepared During In Situ DRIFTS Experiments , 2002 .

[104]  T. Baba,et al.  Conversion of methane into higher hydrocarbons in the presence of ethylene over H-ZSM-5 loaded with silver cations , 2002 .

[105]  P. Mériaudeau,et al.  Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism , 2002 .

[106]  E. Iglesia,et al.  The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5 , 2002 .

[107]  Malcolm L. H. Green,et al.  Effect of carburising agent on the structure of molybdenum carbides , 2001 .

[108]  X. Bao,et al.  A high coking-resistance catalyst for methane aromatization. , 2001, Chemical communications.

[109]  S. Banerjee,et al.  Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts , 2001 .

[110]  B. Gates,et al.  H–D exchange between CD4 and solid acids: AlCl3/sulfonic acid resin, promoted and unpromoted sulfated zirconia, and zeolite HZSM-5 , 2001 .

[111]  X. Bao,et al.  Mo/HMCM-22 Catalysts for Methane Dehydroaromatization: A Multinuclear MAS NMR Study , 2001 .

[112]  E. Iglesia,et al.  Synthesis, Structural Characterization, and Catalytic Properties of Tungsten-Exchanged H-ZSM5† , 2001 .

[113]  Weiping Ding,et al.  Methane Conversion to Aromatics on Mo/H-ZSM5: Structure of Molybdenum Species in Working Catalysts , 2001 .

[114]  Malcolm L. H. Green,et al.  Preparation of Molybdenum Carbides Using Butane and Their Catalytic Performance , 2000 .

[115]  X. Bao,et al.  Methane dehydro‐aromatization over Mo/MCM‐22 catalysts: a highly selective catalyst for the formation of benzene , 2000 .

[116]  V. Ponec,et al.  The universal character of the Mars and Van Krevelen mechanism , 2000 .

[117]  Weiping Zhang,et al.  In‐situ‐1H‐MAS‐NMR‐spektroskopische Beobachtung von Protonenspezies auf einem molybdänmodifizierten H‐ZSM‐5‐Katalysator zur „Dehydroaromatisierung”︁ von Methan , 2000 .

[118]  X. Bao,et al.  In Situ 1H MAS NMR Spectroscopic Observation of Proton Species on a Mo‐Modified HZSM‐5 Zeolite Catalyst for the Dehydroaromatization of Methane , 2000 .

[119]  X. Bao,et al.  On the Induction Period of Methane Aromatization over Mo-Based Catalysts , 2000 .

[120]  N. Rösch,et al.  Structure and Bonding of a Site-Isolated Transition Metal Complex: Rhodium Dicarbonyl in Highly Dealuminated Zeolite Y , 2000 .

[121]  X. Bao,et al.  MAS NMR, ESR and TPD studies of Mo/HZSM‐5 catalysts: evidence for the migration of molybdenum species into the zeolitic channels , 2000 .

[122]  P. Schipper,et al.  History of ZSM-5 fluid catalytic cracking additive development at Mobil , 2000 .

[123]  E. Iglesia,et al.  Genesis of methane activation sites in Mo-exchanged H–ZSM-5 catalysts , 2000 .

[124]  Linsheng Wang,et al.  Selective Dehydroaromatization of Methane toward Benzene on Re/HZSM-5 Catalysts and Effects of CO/CO2 Addition , 2000 .

[125]  X. Bao,et al.  Methane Dehydro-aromatization under Nonoxidative Conditions over Mo/HZSM-5 Catalysts: EPR Study of the Mo Species on/in the HZSM-5 Zeolite , 2000 .

[126]  P. Mériaudeau,et al.  Methane aromatization over Mo/H-ZSM-5: on the reaction pathway , 2000 .

[127]  R. Ohnishi,et al.  Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane with CO/CO2 to benzene and naphthalene , 2000 .

[128]  M. Bäumer,et al.  Catalysis and surface science: What do we learn from studies of oxide-supported cluster model systems? , 2000 .

[129]  Xinwen Guo,et al.  Methane dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen : A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes , 1999 .

[130]  G. Centi,et al.  Selective catalytic reduction of N2O in industrial emissions containing O2, H2O and SO2: Behavior of Fe/ZSM-5 catalysts , 1999 .

[131]  Yide Xu,et al.  Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions , 1999 .

[132]  Bernard P. A. Grandjean,et al.  Bifunctional Behavior of Mo/HZSM-5 Catalysts in Methane Aromatization , 1999 .

[133]  P. Mériaudeau,et al.  Aromatization of methane over Mo/H-ZSM-5 catalyst: on the possible reaction intermediates , 1999 .

[134]  M. Bäumer,et al.  Metal deposits on well-ordered oxide films , 1999 .

[135]  W. Cui,et al.  Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit , 1999 .

[136]  Linsheng Wang,et al.  Bifunctional Catalysis of Mo/HZSM-5 in the Dehydroaromatization of Methane to Benzene and Naphthalene XAFS/TG/DTA/MASS/FTIR Characterization and Supporting Effects , 1999 .

[137]  Wenxiang Zhang,et al.  Aromatization of methane in the absence of oxygen over Mo-based catalysts supported on different types of zeolites , 1998 .

[138]  Zhi-Tao Xiong,et al.  Nonoxidative dehydrogenation and aromatization of methane over W/HZSM‐5‐based catalysts , 1998 .

[139]  B. Viswanathan,et al.  Mo incorporation in MCM-41 type zeolite , 1998 .

[140]  J. Lunsford,et al.  Characterization of Ga/ZSM-5 for the catalytic aromatization of dilute ethylene streams , 1998 .

[141]  B. Weckhuysen,et al.  Conversion of methane to benzene over transition metal ion ZSM-5 zeolites : I. Catalytic characterization , 1998 .

[142]  B. Weckhuysen,et al.  Conversion of Methane to Benzene over Transition Metal Ion ZSM-5 Zeolites: II. Catalyst Characterization by X-Ray Photoelectron Spectroscopy , 1998 .

[143]  Weiguo Song,et al.  PULSE-QUENCH CATALYTIC REACTOR STUDIES REVEAL A CARBON-POOL MECHANISM IN METHANOL-TO-GASOLINE CHEMISTRY ON ZEOLITE HZSM-5 , 1998 .

[144]  B. Weckhuysen,et al.  Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts , 1998 .

[145]  W. Sachtler,et al.  Promoted Fe/ZSM-5 catalysts prepared by sublimation: de-NOx activity and durability in H2O-rich streams , 1998 .

[146]  F. Solymosi,et al.  Study of the reactions of ethylene on supported Mo2C/ZSM-5 catalyst in relation to the aromatization of methane , 1998 .

[147]  Jianhua Yao,et al.  Effects of the nature of coke on the activity and stability of the hybrid catalyst used in the aromatization of ethylene and n-butane , 1997 .

[148]  Y. Schuurman,et al.  Uses of transient kinetics for methane activation studies , 1997 .

[149]  A. Oszkó,et al.  Aromatization of Methane over Supported and Unsupported Mo-Based Catalysts , 1997 .

[150]  G. Somorjai,et al.  Surface Science Approach to Modeling Supported Catalysts , 1997 .

[151]  Linsheng Wang,et al.  Dehydrogenation and aromatization of methane in the absence of oxygen on Mo/HZSM-5 catalysts before and after NH4OH extraction , 1996 .

[152]  F. Solymosi,et al.  Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts , 1996 .

[153]  J. Lunsford,et al.  Catalytic conversion of methane to benzene over Mo/ZSM-5 , 1996 .

[154]  Linsheng Wang,et al.  Methane activation without using oxidants over supported Mo catalysts , 1996 .

[155]  G. Calzaferri,et al.  Thin Mo(CO)6–Y-zeolite layers: preparation and in situ transmission FTIR spectroscopy , 1996 .

[156]  Tao Zhang,et al.  Dehydro-oligomerization of Methane to Ethylene and Aromatics over Molybdenum/HZSM-5 Catalyst , 1995 .

[157]  F. Solymosi,et al.  Dehydrogenation of methane on supported molybdenum oxides. Formation of benzene from methane , 1995 .

[158]  R. Mao,et al.  Hydrogen back-spillover effects in the aromatization of ethylene on hybrid ZSM-5 catalysts , 1994 .

[159]  H. E. Bergna The Colloid Chemistry of Silica , 1994 .

[160]  Q. Xin,et al.  Spectroscopic determination of oxidation and coordination states of Mo cations in the reduced Mo/Al2O3 catalyst , 1994 .

[161]  Yide Xu,et al.  Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts , 1994 .

[162]  H. E. Bergna The Colloid chemistry of silica : developed from a symposium sponsored by the Division of Colloid and Surface Chemistry at the 200th National Meeting of the American Chemical Society, Washington, DC, August 26-31, 1990 , 1994 .

[163]  Ivar M. Dahl,et al.  On the reaction mechanism for propene formation in the MTO reaction over SAPO-34 , 1993 .

[164]  Jiasheng Huang,et al.  Dehydrogenation and aromatization of methane under non-oxidizing conditions , 1993 .

[165]  F. Larkins,et al.  Pyrolysis of Methane to Higher Hydrocarbons: A Thermodynamic Study , 1989 .

[166]  Alexis T. Bell,et al.  Isotopic tracer and NMR studies of carbonaceous species present during CO hydrogenation over Ru/TiO2 , 1989 .

[167]  J. Lunsford,et al.  Gas phase coupling of methyl radicals during the catalytic partial oxidation of methane , 1987 .

[168]  N. Chen,et al.  M2 forming - A process for aromatization of light hydrocarbons , 1986 .

[169]  J. Lunsford,et al.  Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst , 1985 .

[170]  Alexis T. Bell,et al.  The characterization of carbonaceous species on ruthenium catalysts with 13C nuclear magnetic resonance spectroscopy , 1985 .

[171]  J. Anderson,et al.  Reaction of acetylene over ZSM-5-type catalysts , 1983 .

[172]  J. Peri Computerized infrared studies of molybdenum/alumina and molybdenum/silica catalysts , 1982 .

[173]  J. Nagy,et al.  Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite , 1978 .

[174]  G. Ertl,et al.  Theory of carbon monoxide chemisorption on transition metals , 1974 .