On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion

This paper deals with a parabolic-parabolic-ODE chemotaxis haptotaxis system with nonlinear diffusion \begin{eqnarray*}\label{1a} \left\{ \begin{split}{} &u_{t}=\nabla\cdot(\varphi(u)\nabla u)-\chi\nabla\cdot(u\nabla v)-\xi\nabla\cdot(u\nabla w)+\mu u(1-u-w), \\ &v_{t}=\Delta v-v+u, \\ &w_{t}=-vw, \end{split} \right. \end{eqnarray*} under Neumann boundary conditions in a smooth bounded domain $\Omega\subset \mathbb{R}^{2}$, where $\chi$, $\xi$ and $\mu$ are positive parameters and $\varphi(u)$ is a nonlinear diffusion function. Firstly, under the case of non-degenerate diffusion, it is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in $\Omega\times(0,\infty)$. Moreover, under the case of degenerate diffusion, we prove that the corresponding problem admits at least one nonnegative global bounded-in-time weak solution. Finally, under some additional conditions, we derive the temporal decay estimate of $w$.

[1]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[2]  Mingjun Wang,et al.  A Combined Chemotaxis-haptotaxis System: The Role of Logistic Source , 2009, SIAM J. Math. Anal..

[3]  Michael Winkler,et al.  Blow-up prevention by logistic sources in a parabolic–elliptic Keller–Segel system with singular sensitivity , 2014 .

[4]  L. Liotta,et al.  Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells , 1990, The Journal of cell biology.

[5]  Youshan Tao,et al.  Competing effects of attraction vs. repulsion in chemotaxis , 2013 .

[6]  Michael Winkler,et al.  A Chemotaxis-Haptotaxis Model: The Roles of Nonlinear Diffusion and Logistic Source , 2011, SIAM J. Math. Anal..

[7]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[8]  Youshan Tao Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source , 2009 .

[9]  Kevin J. Painter,et al.  CONVERGENCE OF A CANCER INVASION MODEL TO A LOGISTIC CHEMOTAXIS MODEL , 2013 .

[10]  M. Winkler,et al.  Dominance of chemotaxis in a chemotaxis–haptotaxis model , 2014 .

[11]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[12]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[13]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[14]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[15]  Youshan Tao,et al.  Global solution for a chemotactic–haptotactic model of cancer invasion , 2008 .

[16]  B. Perthame Transport Equations in Biology , 2006 .

[17]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .

[18]  Chunlai Mu,et al.  On a quasilinear parabolic–elliptic chemotaxis system with logistic source , 2014 .

[19]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[20]  Sachiko Ishida,et al.  Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains , 2014 .

[21]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[22]  Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity , 2014 .

[23]  Avner Friedman,et al.  Partial differential equations , 1969 .

[24]  Michael Winkler,et al.  Global Regularity versus Infinite-Time Singularity Formation in a Chemotaxis Model with Volume-Filling Effect and Degenerate Diffusion , 2012, SIAM J. Math. Anal..

[25]  Zuzanna Szymańska,et al.  On the global existence of solutions to an aggregation model , 2008 .

[26]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[27]  P. Verde,et al.  Signal transduction and the u-PA/u-PAR system , 1996 .

[28]  Michael Winkler,et al.  Boundedness of solutions to parabolic–elliptic Keller–Segel systems with signal‐dependent sensitivity , 2015 .

[29]  C. Patlak Random walk with persistence and external bias , 1953 .

[30]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[31]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[32]  Youshan Tao Boundedness in a two-dimensional chemotaxis-haptotaxis system , 2014, 1407.7382.

[33]  R. Temam Navier-Stokes Equations , 1977 .

[34]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[35]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity , 2006, Networks Heterog. Media.

[36]  Youshan Tao,et al.  Global boundedness in a fully parabolic attraction–repulsion chemotaxis model , 2015 .

[37]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .