Discrete scale axis representations for 3D geometry

This paper addresses the fundamental problem of computing stable medial representations of 3D shapes. We propose a spatially adaptive classification of geometric features that yields a robust algorithm for generating medial representations at different levels of abstraction. The recently introduced continuous scale axis transform serves as the mathematical foundation of our algorithm. We show how geometric and topological properties of the continuous setting carry over to discrete shape representations. Our method combines scaling operations of medial balls for geometric simplification with filtrations of the medial axis and provably good conversion steps to and from union of balls, to enable efficient processing of a wide variety shape representations including polygon meshes, 3D images, implicit surfaces, and point clouds. We demonstrate the robustness and versatility of our algorithm with an extensive validation on hundreds of shapes including complex geometries consisting of millions of triangles.

[1]  Ghassan Hamarneh,et al.  The Groupwise Medial Axis Transform for Fuzzy Skeletonization and Pruning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Hugues Talbot,et al.  A Discrete lambda-Medial Axis , 2009, DGCI.

[3]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[4]  Sue Whitesides,et al.  Medial Axis Approximation with Bounded Error , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[5]  Mark Pauly,et al.  The scale axis transform , 2009, SCG '09.

[6]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[7]  Hans-Peter Seidel,et al.  Skeleton‐based Variational Mesh Deformations , 2007, Comput. Graph. Forum.

[8]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Transactions on Visualization and Computer Graphics.

[9]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, ACM Trans. Graph..

[10]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[11]  F. Chazal,et al.  The λ-medial axis , 2005 .

[12]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[13]  Dinesh Manocha,et al.  Homotopy-preserving medial axis simplification , 2005, SPM '05.

[14]  Frédéric Chazal,et al.  The "lambda-medial axis" , 2005, Graph. Model..

[15]  Martin Styner,et al.  Automatic and Robust Computation of 3D Medial Models Incorporating Object Variability , 2003, International Journal of Computer Vision.

[16]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.

[17]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[18]  Dinesh Manocha,et al.  Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..

[19]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[20]  Wolfgang Heidrich,et al.  Shape simplification based on the medial axis transform , 2003, IEEE Visualization, 2003. VIS 2003..

[21]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[22]  Tamal K. Dey,et al.  Approximate medial axis for CAD models , 2003, SM '03.

[23]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[24]  Martin Rumpf,et al.  A Continuous Skeletonization Method Based on Level Sets , 2002, VisSym.

[25]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[26]  Nina Amenta,et al.  The medial axis of a union of balls , 2001, Comput. Geom..

[27]  Nina Amenta,et al.  Accurate and efficient unions of balls , 2000, SCG '00.

[28]  Stina Svensson Reversible Surface Skeletons of 3D Objects by Iterative Thinning of Distance Transforms , 2000, Digital and Image Geometry.

[29]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[30]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[31]  Lakshman Prasad,et al.  Morphological Analysis of Shapes , 1997 .

[32]  Dominique Attali,et al.  Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[33]  P. Giblin,et al.  Symmetry sets , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.