Advantages of routine next‐generation sequencing over standard genetic testing in the amyotrophic lateral sclerosis clinic

Next‐generation sequencing has enhanced our understanding of amyotrophic lateral sclerosis (ALS) and its genetic epidemiology. Outside the research setting, testing is often restricted to those who report a family history. The aim of this study was to explore the added benefit of offering routine genetic testing to all patients in a regional ALS centre.

[1]  M. Turner,et al.  Genetic testing in motor neurone disease , 2022, Practical Neurology.

[2]  Caitlin M. Rodriguez,et al.  TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A , 2021, Nature.

[3]  A. Chiò,et al.  Targeted sequencing panels in Italian ALS patients support different etiologies in the ALS/FTD continuum , 2021, Journal of Neurology.

[4]  Ewout J. N. Groen,et al.  Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology , 2021, Nature Genetics.

[5]  T. Jenkins,et al.  Value of systematic genetic screening of patients with amyotrophic lateral sclerosis , 2021, Journal of Neurology, Neurosurgery, and Psychiatry.

[6]  Xiaoming Liu,et al.  dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs , 2020, Genome Medicine.

[7]  Sonja W. Scholz,et al.  Mutational Analysis of Known ALS Genes in an Italian Population-Based Cohort , 2020, Neurology.

[8]  Y. Marie,et al.  Genetic screening of ANXA11 revealed novel mutations linked to amyotrophic lateral sclerosis , 2020, Neurobiology of Aging.

[9]  Denis C. Bauer,et al.  Identity by descent analysis identifies founder events and links SOD1 familial and sporadic ALS cases. , 2020, NPJ genomic medicine.

[10]  M. Turner,et al.  Amyotrophic lateral sclerosis with a heterozygous D91A SOD1 variant and classical ALS-TDP neuropathology , 2020, Neurology.

[11]  Denis C. Bauer,et al.  Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis , 2020, Journal of Medical Genetics.

[12]  N. Wray,et al.  ALS in Danish Registries , 2020, Neurology: Genetics.

[13]  L. H. van den Berg,et al.  Primary lateral sclerosis: consensus diagnostic criteria , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[14]  Brent S. Pedersen,et al.  Somalier: rapid relatedness estimation for cancer and germline studies using efficient genome sketches , 2019, Genome Medicine.

[15]  Jochen H Weishaupt,et al.  Update on amyotrophic lateral sclerosis genetics. , 2019, Current opinion in neurology.

[16]  Yong Ho Kim,et al.  ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics , 2019, Science Translational Medicine.

[17]  Srinivas Aluru,et al.  Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[18]  David G. Knowles,et al.  Predicting Splicing from Primary Sequence with Deep Learning , 2019, Cell.

[19]  M. Turner,et al.  Amyotrophic lateral sclerosis: the complex path to precision medicine , 2018, Journal of Neurology.

[20]  A. Singleton,et al.  Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes , 2018, JAMA neurology.

[21]  S. Klebe,et al.  Comprehensive analysis of the mutation spectrum in 301 German ALS families , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[22]  Tom R. Gaunt,et al.  FATHMM-XF: accurate prediction of pathogenic point mutations via extended features , 2017, Bioinform..

[23]  J. Rowe,et al.  Genetic screening in sporadic ALS and FTD , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[24]  Ashley R. Jones,et al.  A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK , 2017, Brain : a journal of neurology.

[25]  A. Al-Chalabi,et al.  Genetic testing in ALS , 2017, Neurology.

[26]  D. Goldstein,et al.  Genetic epidemiology of motor neuron disease-associated variants in the Scottish population , 2017, Neurobiology of Aging.

[27]  Annelot M. Dekker,et al.  NEK1 variants confer susceptibility to amyotrophic lateral sclerosis , 2016, Nature Genetics.

[28]  Robert H. Brown,et al.  CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia , 2016, Nature Communications.

[29]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, bioRxiv.

[30]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[31]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[32]  H. Kusaka,et al.  An autopsy case of sporadic amyotrophic lateral sclerosis associated with the I113T SOD1 mutation , 2014, Neuropathology (Kyoto. 1993).

[33]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[34]  Olubunmi Abel,et al.  ALSoD: A user‐friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics , 2012, Human mutation.

[35]  T. Strom,et al.  Hereditary motor neuron disease in a large Norwegian family with a “H46R” substitution in the superoxide dismutase 1 gene , 2012, Neuromuscular Disorders.

[36]  T. Suga,et al.  Sporadic juvenile amyotrophic lateral sclerosis caused by mutant FUS/TLS: possible association of mental retardation with this mutation , 2012, Journal of Neurology.

[37]  O. Hardiman,et al.  Absence of consensus in diagnostic criteria for familial neurodegenerative diseases , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[38]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[39]  Young H. Kwon,et al.  Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. , 2011, Human molecular genetics.

[40]  J. Bouchard,et al.  Analysis of OPTN as a causative gene for amyotrophic lateral sclerosis , 2011, Neurobiology of Aging.

[41]  O. Hardiman,et al.  Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[42]  A. Al-Chalabi,et al.  An estimate of amyotrophic lateral sclerosis heritability using twin data , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[43]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[44]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[45]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[46]  A. Chiò,et al.  Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation , 2009, Neurobiology of Aging.

[47]  A. Tessitore,et al.  Further evidence that D90A-SOD1 mutation is recessively inherited in ALS patients in Italy , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[48]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[49]  R. Orrell,et al.  Familial amyotrophic lateral sclerosis with a point mutation of SOD-1: intrafamilial heterogeneity of disease duration associated with neurofibrillary tangles. , 1995, Journal of neurology, neurosurgery, and psychiatry.

[50]  Y. Itoyama,et al.  Familial amyotrophic lateral sclerosis (ALS) in Japan associated with H46R mutation in Cu Zn superoxide dismutase gene: A possible new subtype of familial ALS , 1994, Journal of the Neurological Sciences.