Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application

Abstract The need to improve the sensitivity, selectivity and stability of ozone gas sensors capable of monitoring the environment to prevent hazard to humans has sparked research on binary metal oxides. Here we report on a novel ozone gas sensor made with ca. 0.5 μm yolk-shelled ZnCo2O4 microstructures synthesized via an eco-friendly, co-precipitation method and subsequent annealing. With these ZnCo2O4 microspheres, ozone concentrations down to 80 parts per billion (ppb) could be detected with a.c. and d.c. electrical measurements. The sensor worked within a wide range of ozone concentrations, from 80 to 890 ppb, being also selective to ozone compared to CO, NH3 and NO2. The high performance could be attributed to the large surface area to volume ratio inherent in yolk-shell structures. Indeed, ozone molecules adsorbed on the ZnCo2O4 surface create a layer of holes that affect the conductivity, as in a p-type semiconductor. Since this mechanism of detection is generic, ZnCo2O4 microspheres can be further used in other environment monitoring devices.

[1]  D. K. Aswal,et al.  Flexible H2S sensor based on gold modified polycarbazole films , 2014 .

[2]  J. L. Gautier,et al.  Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4 , 2001 .

[3]  P. Nafstad,et al.  Day care center characteristics and children's respiratory health. , 2005, Indoor air.

[4]  J. Vázquez,et al.  Preparation and characterization of copper-doped cobalt oxide electrodes. , 2006, The journal of physical chemistry. B.

[5]  T. Shi,et al.  Nanowire-Assembled Hierarchical ZnCo2O4 Microstructure Integrated with a Low-Power Microheater for Highly Sensitive Formaldehyde Detection. , 2016, ACS applied materials & interfaces.

[6]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[7]  Q. Li,et al.  Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries , 2013 .

[8]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[9]  Xiaohong Xu,et al.  3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries , 2016 .

[10]  Ghenadii Korotcenkov,et al.  In2O3- and SnO2-Based Thin Film Ozone Sensors: Fundamentals , 2016, J. Sensors.

[11]  F. Shimizu,et al.  Adsorption according to the Langmuir-Freundlich model is the detection mechanism of the antigen p53 for early diagnosis of cancer. , 2016, Physical chemistry chemical physics : PCCP.

[12]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[13]  C. Feng,et al.  Synthesis of ZnCo2O4 microspheres with Zn0.33Co0.67CO3 precursor and their electrochemical performance , 2016, Journal of Nanoparticle Research.

[14]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[15]  N. Perry,et al.  Phase Equilibria of the Zinc Oxide–Cobalt Oxide System in Air , 2013 .

[16]  D. Late,et al.  Field emission properties of spinel ZnCo2O4 microflowers , 2015 .

[17]  S. Pawar,et al.  Hierarchical Mesoporous 3D Flower-like CuCo2O4/NF for High-Performance Electrochemical Energy Storage , 2016, Scientific Reports.

[18]  T. Salthammer Air Pollution – Health and Environmental Impacts , 2010 .

[19]  Haiyan Gao,et al.  Fabricating hierarchical porous ZnCo2O4 microspheres as high-performance anode material for lithium-ion batteries , 2016 .

[20]  C. Cao,et al.  Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance , 2016, Scientific Reports.

[21]  Longwei Yin,et al.  Highly ordered mesoporous spinel ZnCo2O4 as a high-performance anode material for lithium-ion batteries , 2016 .

[22]  R. Kumar,et al.  Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review , 2014, Nano-Micro Letters.

[23]  Ren-Jang Wu,et al.  A dynamic equilibrium method for the SnO2-based ozone sensors using UV-LED continuous irradiation , 2014 .

[24]  Ashutosh Kumar Singh,et al.  Room temperature detection of H2S by flexible gold–cobalt phthalocyanine heterojunction thin films , 2015 .

[25]  Bharat B. Kale,et al.  Effect of zinc : cobalt composition in ZnCo2O4 spinels for highly selective liquefied petroleum gas sensing at low and high temperatures , 2015 .

[26]  Jun Wang,et al.  Synthesis, characterization and enhanced gas sensing performance of porous ZnCo2O4 nano/microspheres. , 2015, Nanoscale.

[27]  F. Zhang,et al.  Hierarchically Porous CuO Hollow Spheres Fabricated via a One-Pot Template-Free Method for High-Performance Gas Sensors , 2012 .

[28]  F. Ghodsi,et al.  Effect of Zn content on the structural, optical, electrical and supercapacitive properties of sol–gel derived ZnCo2O4 nanostructured thin films , 2016, Journal of Materials Science: Materials in Electronics.

[29]  Ghenadii Korotcenkov,et al.  Ozone measuring: What can limit application of SnO2-based conductometric gas sensors? , 2012 .

[30]  Khalifa Aguir,et al.  Ozone gas sensor based on nanocrystalline SrTi1−xFexO3 thin films , 2013 .

[31]  Dewyani Patil,et al.  Nanostructured spinel ZnCo2O4 for the detection of LPG , 2011 .

[32]  Khalifa Aguir,et al.  One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures , 2016 .

[33]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[34]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[35]  Khalifa Aguir,et al.  A novel ozone gas sensor based on one-dimensional (1D) α-Ag₂WO₄ nanostructures. , 2014, Nanoscale.

[36]  Yanfang Liu,et al.  Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets , 2014 .

[37]  D. K. Aswal,et al.  Flexible NO gas sensor based on conducting polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) , 2017 .

[38]  A. G. Macdonald,et al.  AC admittance of the metal/insulator/electrolyte interface , 1987 .

[39]  F. Shimizu,et al.  Controlled Film Architectures to Detect a Biomarker for Pancreatic Cancer Using Impedance Spectroscopy. , 2015, ACS applied materials & interfaces.

[40]  Oliver Ambacher,et al.  Photon stimulated sensor based on indium oxide nanoparticles I: Wide-concentration-range ozone monitoring in air , 2011 .

[41]  N. Zhang,et al.  Effect of Morphology of ZnCo2O4 Nanostructures on Electrochemical Performance , 2016 .

[42]  Xiangyang Zhou,et al.  One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries , 2015 .

[43]  Yudi Mo,et al.  Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances , 2016 .

[44]  A. R. Ruiz-Salvador,et al.  An elementary picture of dielectric spectroscopy in solids: Physical basis , 2003 .

[45]  E. Longo,et al.  Local Structure and Surface Properties of CoxZn1-xO Thin Films for Ozone Gas Sensing. , 2016, ACS applied materials & interfaces.

[46]  Khalifa Aguir,et al.  Electrical properties of reactively sputtered WO3 thin films as ozone gas sensor , 2002 .

[47]  Chiu-Hsien Wu,et al.  Highly sensitive amorphous In–Ga–Zn–O films for ppb-level ozone sensing: Effects of deposition temperature , 2015 .

[48]  H. Tuller,et al.  Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents , 2015 .

[49]  G. Prakash,et al.  Functional properties of ZnCo2O4 nano-particles obtained by thermal decomposition of a solution of binary metal nitrates , 2015 .

[50]  G. Eranna,et al.  Metal Oxide Nanostructures as Gas Sensing Devices , 2011 .

[51]  F. Shimizu,et al.  Supramolecular Control in Nanostructured Film Architectures for Detecting Breast Cancer. , 2015, ACS applied materials & interfaces.

[52]  E. Longo,et al.  Ozone and nitrogen dioxide gas sensor based on a nanostructured SrTi0.85Fe0.15O3 thin film , 2015 .

[53]  N. Iftimie,et al.  Functional properties of nickel cobalt oxide thin films , 2011 .

[54]  Thanh-Dinh Nguyen From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. , 2013, Nanoscale.

[55]  Khalifa Aguir,et al.  An easy method of preparing ozone gas sensors based on ZnO nanorods , 2015 .

[56]  Pietro Siciliano,et al.  Nanocrystals as Very Active Interfaces: Ultrasensitive Room-Temperature Ozone Sensors with In2O3 Nanocrystals Prepared by a Low-Temperature Sol−Gel Process in a Coordinating Environment , 2007 .

[57]  Weimin Du,et al.  Preparation and gas sensing properties of ZnM2O4 (M = Fe, Co, Cr) , 2004 .

[58]  D. Wexler,et al.  Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder , 2013 .

[59]  R. Haul S. J. Gregg, K. S. W. Sing: Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: $ 49.50 , 1982 .

[60]  E. Longo,et al.  Hierarchical growth of ZnO nanorods over SnO2 seed layer: insights into electronic properties from photocatalytic activity , 2016 .

[61]  Jinmo Kim,et al.  Nonstoichiometric Co-rich ZnCo2O4 Hollow Nanospheres for High Performance Formaldehyde Detection at ppb Levels. , 2016, ACS applied materials & interfaces.

[62]  Alessandro Martucci,et al.  Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol–gel films , 2005 .

[63]  Lei He,et al.  Preparation of bi-component ZnO/ZnCo2O4 nanocomposites with improved electrochemical performance as anode materials for lithium-ion batteries , 2016 .

[64]  Yuncang Li,et al.  Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries , 2013 .

[65]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[66]  Nirav Joshi,et al.  Bending stress induced improved chemiresistive gas sensing characteristics of flexible cobalt-phthalocyanine thin films , 2013 .

[67]  Jaekook Kim,et al.  Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity. , 2014, Nanoscale.

[68]  Jing Wang,et al.  Novel Zn–M–O (M = Sn, Co) sensing electrodes for selective mixed potential CO/C3H8 sensors , 2013 .

[69]  L. C. Simões,et al.  Biofilms in drinking water: problems and solutions , 2013 .

[70]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[71]  Guoying Zhang,et al.  MCo2O4 (M = Ni, Cu, Zn) nanotubes: Template synthesis and application in gas sensors , 2006 .

[72]  Thorsten Wagner,et al.  Mesoporous materials as gas sensors. , 2013, Chemical Society reviews.