The Sound of Symmetry
暂无分享,去创建一个
[1] H. Weinberger,et al. Some isoperimetric inequalities for membrane frequencies and torsional rigidity , 1961 .
[2] M. Berg,et al. Heat equation for a region in R2 with a polygonal boundary , 1988 .
[3] Carolyn S. Gordon. You Can’t Hear the Shape of a Manifold , 1992 .
[4] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .
[5] S. J. Chapman,et al. Drums That Sound the Same , 1995 .
[6] Lloyd N. Trefethen,et al. Schwarz-Christoffel Mapping , 2002 .
[7] P. Buser. Isospectral Riemann surfaces , 1986 .
[8] Luc Hillairet,et al. Contribution of periodic diffractive geodesics , 2005 .
[9] G. Pólya,et al. Isoperimetric inequalities in mathematical physics , 1951 .
[10] Leonid Friedlander,et al. On the spectrum of the Dirichlet Laplacian in a narrow strip , 2007 .
[11] J. Steiner,et al. Einfache Beweise der isoperimetrischen Hauptsätze. , 1838 .
[12] R. Courant,et al. Methoden der mathematischen Physik , .
[13] Ben Andrews,et al. Proof of the fundamental gap conjecture , 2010, 1006.1686.
[14] Carolyn S. Gordon. When you can’t hear the shape of a manifold , 1989 .
[15] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[16] P. Freitas. Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi , 2007 .
[17] On the inverse spectral problem for polygonal domains , 1988 .
[18] David L. Webb,et al. One cannot hear the shape of a drum , 1992, math/9207215.
[19] E. Witt,et al. Eine Identität zwischen Modulformen zweiten Grades , 1941 .
[20] Zhiqin Lu,et al. The Fundamental Gap and One-Dimensional Collapse , 2014 .
[21] J. Milnor,et al. EIGENVALUES OF THE LAPLACE OPERATOR ON CERTAIN MANIFOLDS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[22] Viktor Blåsjö,et al. The Isoperimetric Problem , 2005, Am. Math. Mon..
[23] Toshikazu Sunada,et al. Riemannian coverings and isospectral manifolds , 1985 .
[24] Pedro R. S. Antunes,et al. On the inverse spectral problem for Euclidean triangles , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[25] Å. Pleijel. A study of certain Green's functions with applications in the theory of vibrating membranes , 1954 .
[26] D. Grieser,et al. Hearing the shape of a triangle , 2012, 1208.3163.
[27] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[28] David L. Webb,et al. Isospectral plane domains and surfaces via Riemannian orbifolds , 1992 .
[29] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[30] H. McKean,et al. Curvature and the Eigenvalues of the Laplacian , 1967 .
[31] V. Guillemin,et al. The spectrum of positive elliptic operators and periodic bicharacteristics , 1975 .
[32] Claudio Perez Tamargo. Can one hear the shape of a drum , 2008 .
[33] Pedro Freitas,et al. New Bounds for the Principal Dirichlet Eigenvalue of Planar Regions , 2006, Exp. Math..