Improving the convergence of non-interior point algorithms for nonlinear complementarity problems

Recently, based upon the Chen-Harker-Kanzow-Smale smoothing function and the trajectory and the neighbourhood techniques, Hotta and Yoshise proposed a noninterior point algorithm for solving the nonlinear complementarity problem. Their algorithm is globally convergent under a relatively mild condition. In this paper, we modify their algorithm and combine it with the superlinear convergence theory for nonlinear equations. We provide a globally linearly convergent result for a slightly updated version of the Hotta-Yoshise algorithm and show that a further modified Hotta-Yoshise algorithm is globally and superlinearly convergent, with a convergence Q-order 1 + t, under suitable conditions, where t ∈ (0, 1) is an additional parameter.

[1]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[2]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Variational Inequalities , 1999 .

[3]  K. G. Murty,et al.  Complementarity problems , 2000 .

[4]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[5]  James V. Burke,et al.  The Global Linear Convergence of a Noninterior Path-Following Algorithm for Linear Complementarity Problems , 1998, Math. Oper. Res..

[6]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[7]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[8]  Xiaojun Chen,et al.  A Global Linear and Local Quadratic Continuation Smoothing Method for Variational Inequalities with Box Constraints , 2000, Comput. Optim. Appl..

[9]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[10]  Song Xu,et al.  The global linear convergence of an infeasible non-interior path-following algorithm for complementarity problems with uniform P-functions , 2000, Math. Program..

[11]  Xiaojun ChenyMay A Global and Local Superlinear Continuation-Smoothing Method for P0 +R0 and Monotone NCP , 1997 .

[12]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[13]  Paul Tseng,et al.  An Infeasible Path-Following Method for Monotone Complementarity Problems , 1997, SIAM J. Optim..

[14]  G. Isac Complementarity Problems , 1992 .

[15]  Christian Kanzow,et al.  A continuation method for (strongly) monotone variational inequalities , 1998, Math. Program..

[16]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[17]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[18]  Patrick T. Harker,et al.  A continuation method for monotone variational inequalities , 1995, Math. Program..

[19]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[20]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[21]  Song Xu,et al.  A non–interior predictor–corrector path following algorithm for the monotone linear complementarity problem , 2000, Math. Program..

[22]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[23]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[24]  Stephen M. Robinson,et al.  Generalized Equations , 1982, ISMP.

[25]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[26]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[27]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[28]  Keisuke Hotta,et al.  Global convergence of a class of non-interior point algorithms using Chen-Harker-Kanzow-Smale functions for nonlinear complementarity problems , 1999, Math. Program..

[29]  Nimrod Megiddo,et al.  Homotopy Continuation Methods for Nonlinear Complementarity Problems , 1991, Math. Oper. Res..

[30]  Stephen J. Wright,et al.  A Superlinear Infeasible-Interior-Point Algorithm for Monotone Complementarity Problems , 1996, Math. Oper. Res..

[31]  Bintong Chen,et al.  A Global Linear and Local Quadratic Noninterior Continuation Method for Nonlinear Complementarity Problems Based on Chen-Mangasarian Smoothing Functions , 1999, SIAM J. Optim..

[32]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[33]  L. Qi,et al.  A Globally Convergent Successive Approximation Method for Severely Nonsmooth Equations , 1995 .

[34]  J. Burke,et al.  A Non-Interior Predictor-Corrector Path-Following Method for LCP , 1998 .

[35]  Martin Grötschel,et al.  Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.

[36]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[37]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..