Benchmark cases for robust explicit time integrators in non-smooth transient dynamics

This article introduces benchmark cases for time integrators devoted to non-smooth impact dynamics. It focuses on numerical properties of explicit integrators. Each case tests one necessary numerical property in computational impact dynamics: energy behaviour at impact, angular momentum conservation, non-linear behaviour. The cases are easy to implement and analyse, providing a benchmark well-suited to first numerical studies. We rewrite explicit schemes for non-smooth impact dynamics with unified notations, and analyse them with the benchmark cases.

[1]  Anthony Gravouil,et al.  A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics , 2017 .

[2]  R. Taylor,et al.  Lagrange constraints for transient finite element surface contact , 1991 .

[3]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[4]  Adnan Ibrahimbegovic,et al.  Study of geometric non-linear instability of 2D frame structures , 2015 .

[5]  Patrice Hauret,et al.  Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact , 2010 .

[6]  V. Acary,et al.  A nonsmooth generalized‐ α scheme for flexible multibody systems with unilateral constraints , 2013 .

[7]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[8]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[9]  Lisa Dresner Nonlinear Finite Elements For Continua And Structures , 2016 .

[10]  J. J.,et al.  Numerical aspects of the sweeping process , 1999 .

[11]  Vincent Acary,et al.  Energy conservation and dissipation properties of time‐integration methods for nonsmooth elastodynamics with contact , 2014, 1410.2499.

[12]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[13]  Franz Chouly,et al.  Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems , 2018, Adv. Model. Simul. Eng. Sci..

[14]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[15]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[16]  Rolf Krause,et al.  Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme , 2012 .

[17]  Shen R. Wu,et al.  Lumped mass matrix in explicit finite element method for transient dynamics of elasticity , 2006 .

[18]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems II: The Multidimensional Case , 2002, SIAM J. Numer. Anal..

[19]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[20]  Casadei Folco,et al.  Pinball-based Contact-Impact Model with Parabolic Elements in EUROPLEXUS , 2014 .

[21]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[22]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[23]  Nils-Erik Wiberg,et al.  Implementation and adaptivity of a space-time finite element method for structural dynamics , 1998 .

[24]  K. Bathe,et al.  An explicit time integration scheme for the analysis of wave propagations , 2013 .

[25]  Jean-Marc Battini,et al.  Energy-momentum method for co-rotational plane beams: A comparative study of shear flexible formulations , 2017 .

[26]  Alexandre Ern,et al.  Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..

[27]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.

[28]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[29]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[30]  Vincent Acary,et al.  Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts , 2012 .

[31]  V. Acary,et al.  Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction , 2013 .

[32]  Jintai Chung,et al.  Explicit time integration algorithms for structural dynamics with optimal numerical dissipation , 1996 .

[33]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[34]  Matthew West,et al.  Decomposition contact response (DCR) for explicit finite element dynamics , 2005, International Journal for Numerical Methods in Engineering.

[35]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[36]  Patrick Laborde,et al.  Mass redistribution method for finite element contact problems in elastodynamics , 2008 .

[37]  Olivier Bruls,et al.  A Newmark-type integrator for flexible systems considering nonsmooth unilateral constraints , 2012 .

[38]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .