A Machine Learning Framework for the Quantification of the Uncertainties Associated with Ab-Initio Based Modeling of Non-Equilibrium Flows

[1]  M. Panesi,et al.  Coarse grain modeling and direct molecular simulation of nitrogen dissociation , 2017 .

[2]  Sergei Manzhos,et al.  Neural network‐based approaches for building high dimensional and quantum dynamics‐friendly potential energy surfaces , 2015 .

[3]  Hua Guo,et al.  Permutation invariant polynomial neural network approach to fitting potential energy surfaces. , 2013, The Journal of chemical physics.

[4]  Joel M. Bowman,et al.  Permutationally invariant potential energy surfaces in high dimensionality , 2009 .

[5]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[6]  Serge Prudhomme,et al.  Estimation of the nitrogen ionization reaction rate using electric arc shock tube data and Bayesian model analysis , 2012 .

[7]  J. Behler Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. , 2011, Physical chemistry chemical physics : PCCP.

[8]  Carl T. Bergstrom,et al.  The map equation , 2009, 0906.1405.

[9]  Jun Li,et al.  Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks. , 2016, The Journal of chemical physics.

[10]  Antonio Laganà,et al.  Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms , 1987 .

[11]  Dustin Tran,et al.  Automatic Differentiation Variational Inference , 2016, J. Mach. Learn. Res..

[12]  Marco Panesi,et al.  General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures. , 2015, The Journal of chemical physics.

[13]  Chul Park,et al.  Assessment of two-temperature kinetic model for ionizing air , 1987 .

[14]  Ernesto Garcia,et al.  Modeling the global potential energy surface of the N + N2 reaction from ab initio data. , 2008, Physical chemistry chemical physics : PCCP.

[15]  C. Johnston,et al.  Adaptive coarse graining method for energy transfer and dissociation kinetics of polyatomic species. , 2017, The Journal of chemical physics.

[16]  N. Mansour,et al.  A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres , 2016, 1612.04438.

[17]  Mario Capitelli,et al.  N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations , 2006 .

[18]  Marco Panesi,et al.  Modeling of dissociation and energy transfer in shock-heated nitrogen flows , 2015 .

[19]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[20]  M. Jacomy,et al.  ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software , 2014, PloS one.

[21]  Dinesh K. Prabhu,et al.  Assessment of Laminar, Convective Aeroheating Prediction Uncertainties for Mars-Entry Vehicles , 2013 .

[22]  Peter A. Gnoffo,et al.  Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability , 2013 .

[23]  D. Truhlar,et al.  Potential energy surfaces for O + O2 collisions. , 2017, The Journal of chemical physics.

[24]  A. Varandas,et al.  Accurate double many-body expansion potential energy surface for N3((4)A'') from correlation scaled ab initio energies with extrapolation to the complete basis set limit. , 2009, The journal of physical chemistry. A.

[25]  S. Sato,et al.  On a New Method of Drawing the Potential Energy Surface , 1955 .

[26]  Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients , 2016 .

[27]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[28]  Marco Panesi,et al.  Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows. , 2013, The Journal of chemical physics.

[29]  P. Popelier,et al.  Potential energy surfaces fitted by artificial neural networks. , 2010, The journal of physical chemistry. A.

[30]  David W. Schwenke,et al.  Calculations of rate constants for the three‐body recombination of H2 in the presence of H2 , 1988 .