Algorithm 839: FIAT, a new paradigm for computing finite element basis functions

Much of finite element computation is constrained by the difficulty of evaluating high-order nodal basis functions. While most codes rely on explicit formulae for these basis functions, we present a new approach that allows us to construct a general class of finite element basis functions from orthonormal polynomials and evaluate and differentiate them at any points. This approach relies on fundamental ideas from linear algebra and is implemented in Python using several object-oriented and functional programming techniques.

[1]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[2]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[3]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[4]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[5]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[6]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[7]  L. Demkowicz,et al.  An hp-adaptive finite element method for electromagnetics: Part 1: Data structure and constrained approximation , 2000 .

[8]  Bruce M. Irons,et al.  EXPERIENCE WITH THE PATCH TEST FOR CONVERGENCE OF FINITE ELEMENTS , 1972 .

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[11]  Konrad Hinsen,et al.  Numerical Python , 1996 .

[12]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[13]  M.N. Sastry,et al.  Structure and interpretation of computer programs , 1986, Proceedings of the IEEE.

[14]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[15]  B. Rivière,et al.  Locally Conservative Algorithms for Flow , 2000 .

[16]  Anders Logg,et al.  DOLFIN: Dynamic Object oriented Library for FINite element computation , 2002 .

[17]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[18]  Wolfgang Bangerth,et al.  Concepts for Object-Oriented Finite Element Software - the deal.II Library , 1999 .

[19]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[20]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[21]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[22]  Leszek Demkowicz,et al.  An hp‐adaptive finite element method for electromagnetics—part II: A 3D implementation , 2002 .

[23]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .