Adaptive Space-Time Finite Element Approximations of Parabolic Optimal Control Problems

5

[1]  P Jamet,et al.  Numerical solution of the eulerian equations of compressible flow by a finite element method which follows the free boundary and the interfaces , 1975 .

[2]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints , 2008, SIAM J. Control. Optim..

[3]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[4]  Michael Hintermüller,et al.  Goal Oriented Mesh Adaptivity for Mixed Control-State Constrained Elliptic Optimal Control Problems , 2010 .

[6]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[7]  Folkmar A. Bornemann,et al.  An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..

[8]  Wenbin Liu,et al.  Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 , 2008 .

[9]  Jml Maubach,et al.  Iterative methods for non-linear partial differential equations , 1991 .

[10]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[11]  Carsten Carstensen,et al.  Estimator competition for Poisson problems , 2010 .

[12]  R. Hoppe,et al.  A posteriori error analysis of adaptive finite element methods for control constrained distributed and boundary control problems , 2006 .

[13]  Boris Vexler,et al.  Adaptive Finite Elements for Elliptic Optimization Problems with Control Constraints , 2008, SIAM J. Control. Optim..

[14]  Kunibert G. Siebert,et al.  A Posteriori Error Estimators for Control Constrained Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[15]  W. Wollner,et al.  A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints , 2010, Comput. Optim. Appl..

[16]  O. Axelsson Iterative solution methods , 1995 .

[17]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.

[18]  Tao Tang,et al.  A Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method for Optimal Control Problems Governed by Parabolic Equations , 2004, SIAM J. Numer. Anal..

[19]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[20]  Ronald H. W. Hoppe,et al.  Primal–dual Newton interior point methods in shape and topology optimization , 2004, Numer. Linear Algebra Appl..

[21]  Stefano Berrone,et al.  A new marking strategy for the adaptive finite element approximation of optimal control constrained problems , 2011, Optim. Methods Softw..

[22]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[23]  W. E. Bosarge,et al.  The Ritz-Galerkin procedure for parabolic control problems , 1973 .

[24]  R. Hoppe,et al.  Functional approach to a posteriori error estimation for elliptic optimal control problems with distributed control , 2007 .

[25]  Ningning Yan,et al.  A posteriori error estimates for optimal control problems governed by parabolic equations , 2003, Numerische Mathematik.

[26]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[27]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach (Encyclopedia of Mathematics and its Applications) , 2008 .

[28]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[29]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[30]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[31]  Ronald H. W. Hoppe,et al.  Adaptive finite element methods for mixed control-state constrained optimal control problems for elliptic boundary value problems , 2010, Comput. Optim. Appl..

[32]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[33]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[34]  Roland Becker,et al.  Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..

[35]  Ronald H. W. Hoppe,et al.  Primal-dual Newton Methods in Structural Optimization , 2006 .

[36]  Ronald H. W. Hoppe,et al.  A posteriori error estimates for adaptive finite element discretizations of boundary control problems , 2006, J. Num. Math..

[37]  Fredi Tröltzsch Optimality conditions for parabolic control problems and applications , 1984 .

[38]  Andreas Günther,et al.  A posteriori error control of a state constrained elliptic control problem , 2008, J. Num. Math..

[39]  Marco Picasso,et al.  Anisotropic a posteriori error estimate for an optimal control problem governed by the heat equation , 2006 .

[40]  Michael Hintermüller,et al.  Goal-oriented adaptivity in control constrained optimal control of partial differential equations , 2008, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[41]  Boris Vexler,et al.  Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..

[42]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[43]  Ronald H. W. Hoppe,et al.  Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .

[44]  Marek Behr,et al.  Simplex space–time meshes in finite element simulations , 2008 .

[45]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[46]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[47]  Wei,et al.  A NEW FINITE ELEMENT APPROXIMATION OF A STATE-CONSTRAINED OPTIMAL CONTROL PROBLEM , 2009 .

[48]  C. S Frederiksen,et al.  Finite-element method for time-dependent incompressible free surface flow , 1981 .

[49]  Ruo Li,et al.  A Posteriori Error Estimates of Recovery Type for Distributed Convex Optimal Control Problems , 2007, J. Sci. Comput..

[50]  Michael Hintermüller,et al.  Goal-Oriented Adaptivity in Pointwise State Constrained Optimal Control of Partial Differential Equations , 2010, SIAM J. Control. Optim..

[51]  R. Hoppe,et al.  A Posteriori Estimates for Cost Functionals of Optimal Control Problems , 2006 .

[52]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[53]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[54]  A. Schmidt,et al.  Design and convergence analysis for an adaptive discretization of the heat equation , 2012 .

[55]  R. Hoppe,et al.  Primal-Dual Newton-Type Interior-Point Method for Topology Optimization , 2002 .

[56]  William G. Gray,et al.  Finite element simulation of flow in deforming regions , 1980 .

[57]  A. Fursikov Optimal Control of Distributed Systems: Theory and Applications , 2000 .

[58]  Gabriel Wittum,et al.  Transforming smoothers for PDE constrained optimization problems , 2008 .

[59]  Peter K. Moore,et al.  A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension , 1994 .

[60]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[61]  R. Hoppe,et al.  Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state-constraints , 2012 .

[63]  Ronald H. W. Hoppe,et al.  A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems , 2009, J. Num. Math..

[64]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[65]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[66]  Owe Axelsson,et al.  A time–space finite element discretization technique for the calculation of the electromagnetic field in ferromagnetic materials , 1989 .

[67]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[68]  Fredi Tr Oltzsch,et al.  Lipschitz stability of solutions to linear-quadratic parabolic control problems with respect to perturbations , 1998 .

[69]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[70]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[71]  Boris Vexler,et al.  A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints , 2009, Comput. Optim. Appl..

[72]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[73]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[74]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[75]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[76]  R. Hoppe,et al.  OF UNIFIED A POSTERIORI FINITE ELEMENT ERROR CONTROL By , 2010 .

[77]  P Jamet,et al.  Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements , 1977 .

[78]  Sunil Vijay Sathe Enhanced-discretization and solution techniques in flow simulations and parachute fluid-structure interactions , 2004 .

[79]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[80]  E. Stein,et al.  Finite elements in space and time for generalized viscoelastic maxwell model , 2001 .

[81]  Folkmar Bornemann,et al.  An adaptive multilevel approach to parabolic equations I. General theory and 1D implementation , 1991, IMPACT Comput. Sci. Eng..

[82]  Joachim Schöberl,et al.  A Robust Multigrid Method for Elliptic Optimal Control Problems , 2011, SIAM J. Numer. Anal..

[83]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .