Inference from the Small Scales of Cosmic Shear with Current and Future Dark Energy Survey Data

Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback, and active galactic nuclei feedback. While muddying any cosmological information that is contained in small-scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. (2015) halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on non-linear scales, ' lensing bias ', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear data sets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.

[1]  D. Kirk,et al.  Simultaneous constraints on cosmology and photometric redshift bias from weak lensing and galaxy clustering , 2016, 1607.07910.

[2]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[3]  D. Gerdes,et al.  Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps , 2016, 1605.02036.

[4]  Shahab Joudaki,et al.  CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics , 2016, 1601.05786.

[5]  Tim Eifler,et al.  COSMOLIKE - cosmological likelihood analyses for photometric galaxy surveys , 2016, 1601.05779.

[6]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[7]  R. Wechsler,et al.  Cosmic shear as a probe of galaxy formation physics , 2016, 1605.09056.

[8]  R. Teyssier,et al.  nIFTy galaxy cluster simulations – IV. Quantifying the influence of baryons on halo properties , 2016, 1602.06668.

[9]  Thomas D. Kitching,et al.  Discrepancies between CFHTLenS cosmic shear and Planck: new physics or systematic effects? , 2016, 1602.02960.

[10]  C. B. D'Andrea,et al.  No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey , 2015, 1507.08336.

[11]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[12]  C. B. D'Andrea,et al.  The DES Science Verification weak lensing shear catalogues , 2015, Monthly Notices of the Royal Astronomical Society.

[13]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[14]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[15]  R. Nichol,et al.  MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA , 2015, 1507.05647.

[16]  A. Hopkins,et al.  Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00735.

[17]  Shahab Joudaki,et al.  An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.

[18]  R. Nichol,et al.  Cosmic shear measurements with Dark Energy Survey science verification data , 2015, 1507.05598.

[19]  Chihway Chang,et al.  CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY , 2015, 1504.02778.

[20]  J. Blazek,et al.  Tidal alignment of galaxies , 2015, 1504.02510.

[21]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[22]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[23]  S. More,et al.  Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.

[24]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..

[25]  S. Bridle,et al.  Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.

[26]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[27]  C. Heymans,et al.  Baryons, neutrinos, feedback and weak gravitational lensing , 2014, 1407.4301.

[28]  Scott Dodelson,et al.  Accounting for baryonic effects in cosmic shear tomography: determining a minimal set of nuisance parameters using PCA , 2014, 1405.7423.

[29]  E. Bertin,et al.  MODELING THE TRANSFER FUNCTION FOR THE DARK ENERGY SURVEY , 2014, 1411.0032.

[30]  H. Trac,et al.  Systematic errors in the measurement of neutrino masses due to baryonic feedback processes: Prospects for stage IV lensing surveys , 2014, 1405.6205.

[31]  E. Sheldon An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.

[32]  H. Hoekstra,et al.  3D cosmic shear: cosmology from CFHTLenS , 2014, 1401.6842.

[33]  A. Moss,et al.  Evidence for massive neutrinos from cosmic microwave background and lensing observations. , 2013, Physical review letters.

[34]  P. Valageas Source-lens clustering and intrinsic-alignment bias of weak-lensing estimators , 2013, 1306.6151.

[35]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[36]  Tim Eifler,et al.  Combining probes of large-scale structure with COSMOLIKE , 2013, 1302.2401.

[37]  Aaron Roodman,et al.  THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK , 2013, 1308.4982.

[38]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[39]  Scott Dodelson,et al.  The Effect of Covariance Estimator Error on Cosmological Parameter Constraints , 2013, 1304.2593.

[40]  M. Takada,et al.  Power spectrum super-sample covariance , 2013, 1302.6994.

[41]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[42]  Benjamin Joachimi,et al.  Putting the precision in precision cosmology: How accurate should your data covariance matrix be? , 2012, 1212.4359.

[43]  Adam Amara,et al.  An Ultra Fast Image Generator (UFig) for wide-field astronomy , 2012, Astron. Comput..

[44]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[45]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[46]  S. Borgani,et al.  Tomographic weak-lensing shear spectra from large N-body and hydrodynamical simulations , 2012, 1203.5251.

[47]  M. Oguri,et al.  PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION , 2011, 1106.3823.

[48]  P. Schneider,et al.  Cosmic shear covariance: the log-normal approximation , 2011, 1105.3980.

[49]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[50]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[51]  P. Schneider,et al.  A bias in cosmic shear from galaxy selection: results from ray-tracing simulations , 2010, 1010.0010.

[52]  B. Joachimi,et al.  Controlling intrinsic alignments in weak lensing statistics: The nulling and boosting techniques , 2010, 1009.2024.

[53]  Argelander-Institut fur Astronomie,et al.  Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations , 2009, 0911.2454.

[54]  G. Bernstein,et al.  Self-calibration of photometric redshift scatter in weak-lensing surveys , 2009, 0910.4181.

[55]  E. Krause,et al.  Weak lensing power spectra for precision cosmology: Multiple-deflection, reduced shear and lensing bias corrections , 2009, 0910.3786.

[56]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[57]  S. Bridle,et al.  A halo model for intrinsic alignments of galaxy ellipticities , 2009, 0903.3870.

[58]  Masanori Sato,et al.  SIMULATIONS OF WIDE-FIELD WEAK LENSING SURVEYS. I. BASIC STATISTICS AND NON-GAUSSIAN EFFECTS , 2009, 0906.2237.

[59]  R. Teyssier,et al.  The effect of baryons on the variance and the skewness of the mass distribution in the Universe at small scales , 2009, 0905.2615.

[60]  E. Rozo,et al.  LENSING BIAS IN COSMIC SHEAR , 2009, 0904.4703.

[61]  Andrew P. Hearin,et al.  The influence of galaxy formation physics on weak lensing tests of general relativity , 2009, 0904.3334.

[62]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[63]  C. Shapiro BIASED DARK ENERGY CONSTRAINTS FROM NEGLECTING REDUCED SHEAR IN WEAK-LENSING SURVEYS , 2008, 0812.0769.

[64]  A. Zentner,et al.  Self-calibration of tomographic weak lensing for the physics of baryons to constrain dark energy , 2007, 0709.4029.

[65]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[66]  Douglas H. Rudd,et al.  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 08/29/06 EFFECTS OF BARYONS AND DISSIPATION ON THE MATTER POWER SPECTRUM , 2007 .

[67]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[68]  D. Huterer,et al.  Calibrating the nonlinear matter power spectrum: Requirements for future weak lensing surveys , 2004, astro-ph/0412142.

[69]  L. Knox,et al.  Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum , 2004, astro-ph/0409198.

[70]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[71]  M. White Baryons and weak lensing power spectra , 2004, astro-ph/0405593.

[72]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[73]  M. Takada,et al.  Lognormal Property of Weak-Lensing Fields , 2002, astro-ph/0202090.

[74]  Y. Mellier,et al.  Source-lens clustering effects on the skewness of the lensing convergence , 2000, astro-ph/0012200.

[75]  Martin White,et al.  Theoretical estimates of intrinsic galaxy alignment , 2001, astro-ph/0106364.

[76]  H. Couchman,et al.  A fitting formula for the non‐linear evolution of the bispectrum , 2000, astro-ph/0009427.

[77]  Roger D. Blandford,et al.  Intrinsic and extrinsic galaxy alignment , 2000, astro-ph/0005470.

[78]  Ue-Li Pen,et al.  Spin-induced Galaxy Alignments and Their Implications for Weak-Lensing Measurements , 2000, astro-ph/0009052.

[79]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[80]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[81]  E. Blaufuss,et al.  Measurements of the solar neutrino flux from Super-Kamiokande's first 300 days , 1998 .

[82]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[83]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[84]  Simon D. M. White,et al.  Angular momentum growth in protogalaxies , 1984 .