Reliability Analysis of Structural Ceramic Components Using a Three-Parameter Weibull Distribution
暂无分享,去创建一个
[1] John P. Gyekenyesi,et al. Structural Reliability Analysis of Laminated CMC Components , 1993 .
[2] John P. Gyekenyesi,et al. Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual , 1990 .
[3] Dinesh K. Shetty,et al. Reliability analysis of structural ceramics subjected to biaxial flexure , 1991 .
[4] Isaac M Daniel,et al. Analysis of Fracture Probabilities in Nonuniformly Stressed Brittle Materials , 1964 .
[5] W. Weibull. A statistical theory of the strength of materials , 1939 .
[6] T. E. Smith,et al. Dynamic characteristics of single crystal SSME blades , 1987 .
[7] H. L. Heinisch,et al. Weakest Link Theory Reformulated for Arbitrary Fracture Criterion , 1978 .
[8] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[9] J. G. Crose,et al. A Statistical Theory for the Fracture of Brittle Structures Subjected to Nonuniform Polyaxial Stresses , 1974 .
[10] J. Margetson,et al. Brittle Material Design Using Three Parameter Weibull Distributions , 1985 .
[11] George D Quinn. Flexure Strength of Advanced Ceramics - A Round Robin Exercise , 1989 .
[12] Anthony N. Palazotto,et al. A technique for evaluating a unique set of three weibull parameters considering composite materials , 1979 .
[13] George Sines,et al. Combining Data for Improved Weibull Parameter Estimation. , 1980 .
[14] Robert C. Wetherhold,et al. Reliability analysis of continuous fiber composite laminates , 1991 .