Multichannel Seismic Deconvolution Using Markov–Bernoulli Random-Field Modeling

In this paper, we present an algorithm for multichannel blind deconvolution of seismic signals, which exploits lateral continuity of Earth layers based on Markov-Bernoulli random-field modeling. The reflectivity model accounts for layer discontinuities resulting from splitting, merging, starting, or terminating layers within the region of interest. We define a set of reflectivity states and legal transitions between the reflector configurations of adjacent traces and subsequently apply the Viterbi algorithm for finding the most likely sequences of reflectors that are connected across the traces by legal transitions. The improved performance of the proposed algorithm and its robustness to noise, compared with a competitive algorithm, are demonstrated using simulated and real seismic data examples, in blind and nonblind scenarios.

[1]  A. Berkhout,et al.  The seismic method in the search for oil and gas: Current techniques and future developments , 1986, Proceedings of the IEEE.

[2]  G. Lazear Mixed-phase wavelet estimation using fourth-order cumulants , 1993 .

[3]  Brian D. Jeffs Sparse inverse solution methods for signal and image processing applications , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[4]  Kjetil F. Kaaresen Evaluation and applications of the iterated window maximization method for sparse deconvolution , 1998, IEEE Trans. Signal Process..

[5]  Christian Jutten,et al.  Frequency-domain blind deconvolution based on mutual information rate , 2006, IEEE Transactions on Signal Processing.

[6]  M. Lavielle 2-D Bayesian deconvolution , 1991 .

[7]  L. Tong,et al.  Multichannel blind identification: from subspace to maximum likelihood methods , 1998, Proc. IEEE.

[8]  Yves Goussard,et al.  Multichannel seismic deconvolution , 1993, IEEE Trans. Geosci. Remote. Sens..

[9]  Hui Luo,et al.  The application of blind channel identification techniques to prestack seismic deconvolution , 1998 .

[10]  Jerry M. Mendel,et al.  A novel approach to seismic signal processing and modeling , 1981 .

[11]  Klaus D. Tönnies,et al.  A genetic algorithm for automated horizon correlation across faults in seismic images , 2005, IEEE Transactions on Evolutionary Computation.

[12]  Antonio Artés-Rodríguez,et al.  Deconvolution of seismic data using adaptive Gaussian mixtures , 1999, IEEE Trans. Geosci. Remote. Sens..

[13]  T. Kailath,et al.  A least-squares approach to blind channel identification , 1995, IEEE Trans. Signal Process..

[14]  Jerry M. Mendel,et al.  Maximum likelihood detection and estimation of Bernoulli - Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[15]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[16]  Kjetil F. Kaaresen,et al.  Multichannel blind deconvolution of seismic signals , 1998 .

[17]  Erick Baziw,et al.  Principle phase decomposition: a new concept in blind seismic deconvolution , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[18]  J. Black,et al.  Seismic modeling and inversion , 1984, Proceedings of the IEEE.

[19]  Israel Cohen,et al.  Multichannel blind seismic deconvolution using dynamic programming , 2008, Signal Process..

[20]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[21]  Yves Goussard,et al.  Markov modeling for Bayesian restoration of two-dimensional layered structures , 1993, IEEE Trans. Inf. Theory.

[22]  Eric Moulines,et al.  Blind identification of multipath channels: a parametric subspace approach , 2001, IEEE Trans. Signal Process..

[23]  Israel Cohen,et al.  Dynamic Programming For Multichannel Blind Seismic Deconvolution , 2007 .