Process monitoring with online NMR spectroscopy – An enabler for “Industrie 4.0” in process industry
暂无分享,去创建一个
Improvement in deep process understanding is a mandatory prerequisite for the application of modern concepts like Industrial Internet of Things (IIoT) or “Industrie 4.0”. This is particularly relevant in new process concepts such as intensified production in modularized plants. The direct hyphenation with online methods of process analytical technology (PAT) allows profound insights into the actual reactions within chemical and pharmaceutical production steps and provides necessary information for associated control strategies.
While the industrial application of online Raman spectroscopy has already been successfully demonstrated, low-field NMR spectroscopy is not yet adequately developed as an online method for use in process industry. The high information content combined with the low calibration effort makes NMR spectroscopy a highly promising method for modern process automation with a high flexibility due to short set-up times and low requirements regarding validation. This is a major advantage especially within multi-purpose production plants, as well as for processes suffering from fluctuating quality of raw materials. NMR spectroscopy has a high potential for direct quantitative information, while cutting the calibration and validation needs to a minimum and thus exhibiting short set-up times.
Within the EU project CONSENS, an NMR analyzer for direct implementation in an industrial process environment was developed based on a commercially available laboratory instrument. The challenge was not only the hyphenation to the production plant itself, but also to fulfill all requirements of chemical industry, e.g., explosion safety regulations (ATEX), robust automation and modern, as well as classical communication interfaces. The presented NMR module involves a compact spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction), and evaluation. The module transforms the acquired online spectra of various technically relevant reactions to either conventional 4‒20 mA signals as well as WiFi based OPC-UA communication protocols.
The concept was evaluated on two processes of pharmaceutical and chemical industry. As the first example the continuous synthesis of 2-nitrodiphenylamine starting from aniline and o-fluoronitrobenzene, activated by an organometallic lithium reagent, was studied. This application is highly demanding for a reliable automated evaluation of the obtained NMR spectra, which was realized by developing a physically motivated model-based approach.
In the second example, a stage of the synthesis of the industrially important solvent tetrahydrofurane consisting of the catalytic hydrogenation of 2-butine-1,4-diol was monitored. This reaction is proceeding via an intermediate product and suffers from competitive reaction paths. In this application different spectroscopic methods were combined with the data obtained from classical process sensors, e.g., pressure, temperature and flow transducers for the development of innovative control concepts.