Entropy and phase transitions in partially ordered sets
暂无分享,去创建一个
We define the entropy function S (ρ) =lim_(n→∞)2n^(−2)ln N (n,ρ), where N (n,ρ) is the number of different partial order relations definable over a set of n distinct objects, such that of the possible n (n−1)/2 pairs of objects, a fraction ρ are comparable. Using rigorous upper and lower bounds for S (ρ), we show that there exist real numbers ρ_1 and ρ_2;.083<ρ_1⩽1/4 and 3/8⩽ρ_2<48/49; such that S (ρ) has a constant value (ln2)/2 in the interval ρ_1⩽ρ⩽ρ_2; but is strictly less than (ln2)/2 if ρ⩽.083 or if ρ⩾48/49. We point out that the function S (ρ) may be considered to be the entropy function of an interacting "lattice gas" with long‐range three‐body interaction, in which case, the lattice gas undergoes a first order phase transition as a function of the "chemical activity" of the gas molecules, the value of the chemical activity at the phase transition being 1. A variational calculation suggests that the system undergoes an infinite number of first order phase transitions at larger values of the chemical activity. We conjecture that our best lower bound to S (ρ) gives the exact value of S (ρ) for all ρ
[1] D. Kleitman,et al. The number of finite topologies , 1970 .
[2] T. D. Lee,et al. Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .
[3] K. Ikeda. On the Yang-Lee Distribution of Zeros for a Gas Obeying van der Waals' Equation of State. I Fundamental Concepts and the Limit of Vanishing Attraction , 1974 .