An Updated Literature Review of Distance Correlation and Its Applications to Time Series

The concept of distance covariance/correlation was introduced recently to characterize dependence among vectors of random variables. We review some statistical aspects of distance covariance/correlation function and we demonstrate its applicability to time series analysis. We will see that the auto-distance covariance/correlation function is able to identify nonlinear relationships and can be employed for testing the i.i.d.\ hypothesis. Comparisons with other measures of dependence are included.

[1]  D. Tjøstheim,et al.  Asymmetric Dependence Patterns in Financial Returns: An Empirical Investigation Using Local Gaussian Correlation , 2014 .

[2]  A. Feuerverger,et al.  A Consistent Test for Bivariate Dependence , 1993 .

[3]  Geir Drage Berentsen,et al.  Recognizing and visualizing departures from independence in bivariate data using local Gaussian correlation , 2013, Statistics and Computing.

[4]  E. Parzen On Consistent Estimates of the Spectrum of a Stationary Time Series , 1957 .

[5]  J. Dueck,et al.  The affinely invariant distance correlation , 2012, 1210.2482.

[6]  M. Kosorok Discussion of: Brownian distance covariance , 2009, 1010.0822.

[7]  Maria L. Rizzo,et al.  Variable selection in regression using maximal correlation and distance correlation , 2015 .

[8]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[9]  A. I. McLeod,et al.  Distribution of the Residual Autocorrelations in Multivariate Arma Time Series Models , 1981 .

[10]  Yongmiao Hong Testing for pairwise serial independence via the empirical distribution function , 1998 .

[11]  Xiaofeng Shao,et al.  TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS , 2010, Econometric Theory.

[12]  Gábor J. Székely,et al.  The Energy of Data , 2017 .

[13]  A. Belu Multivariate measures of dependence for random variables and Levy processes , 2012 .

[14]  A. Kankainen,et al.  A consistent modification of a test for independence based on the empirical characteristic function , 1998 .

[15]  G. Wahba,et al.  Using distance covariance for improved variable selection with application to learning genetic risk models , 2015, Statistics in medicine.

[16]  Maria L. Rizzo,et al.  On the uniqueness of distance covariance , 2012 .

[17]  Konstantinos Fokianos,et al.  Consistent Testing for Pairwise Dependence in Time Series , 2017, Technometrics.

[18]  D. Tjøstheim,et al.  Local Gaussian correlation: A new measure of dependence , 2013 .

[19]  Maria L. Rizzo,et al.  A multivariate nonparametric test of independence , 2006 .

[20]  Bharath K. Sriperumbudur,et al.  Discussion of: Brownian distance covariance , 2009, 1010.0836.

[21]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[22]  H. Dehling,et al.  Random quadratic forms and the bootstrap for U -statistics , 1994 .

[23]  Wei Biao Wu,et al.  Portmanteau test and simultaneous inference for serial covariances , 2014 .

[24]  Yongmiao Hong,et al.  Generalized spectral tests for serial dependence , 2000 .

[25]  Krishnakumar Balasubramanian,et al.  Ultrahigh Dimensional Feature Screening via RKHS Embeddings , 2013, AISTATS.

[26]  B. Schölkopf,et al.  Kernel‐based tests for joint independence , 2016, 1603.00285.

[27]  E. Mahdi Diagnostic Checking, Time Series and Regression , 2011 .

[28]  Vincent Piras,et al.  Transcriptome-wide Variability in Single Embryonic Development Cells , 2014, Scientific Reports.

[29]  Ignacio N. Lobato,et al.  An Automatic Portmanteau Test for Serial Correlation , 2009 .

[30]  J. Pinkse A consistent nonparametric test for serial independence , 1998 .

[31]  Björn Böttcher,et al.  Detecting independence of random vectors II. Distance multivariance and Gaussian multivariance , 2017 .

[32]  Jing Kong,et al.  Using distance correlation and SS-ANOVA to assess associations of familial relationships, lifestyle factors, diseases, and mortality , 2012, Proceedings of the National Academy of Sciences.

[33]  Martin Keller-Ressel,et al.  Detecting independence of random vectors: generalized distance covariance and Gaussian covariance , 2017, 1711.07778.

[34]  Xiaobo Guo,et al.  Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation , 2014, PloS one.

[35]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[36]  J. Dueck,et al.  A Generalization of an Integral Arising in the Theory of Distance Correlation , 2014, 1411.1312.

[37]  Bin Chen,et al.  TESTING FOR THE MARKOV PROPERTY IN TIME SERIES , 2011, Econometric Theory.

[38]  Marie Husková,et al.  Tests for independence in non-parametric heteroscedastic regression models , 2011, J. Multivar. Anal..

[39]  Berit Arheimer,et al.  Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe , 2016 .

[40]  Le Song,et al.  A Kernel Statistical Test of Independence , 2007, NIPS.

[41]  George Iliopoulos,et al.  Fourier methods for testing multivariate independence , 2008, Comput. Stat. Data Anal..

[42]  D. Vogel,et al.  The distance standard deviation , 2017, The Annals of Statistics.

[43]  Yongmiao Hong,et al.  Hypothesis Testing in Time Series via the Empirical Characteristic Function: A Generalized Spectral Density Approach , 1999 .

[44]  Joseph P. Romano,et al.  Inference for Autocorrelations under Weak Assumptions , 1996 .

[45]  Richard A. Davis,et al.  Applications of distance correlation to time series , 2016, Bernoulli.

[46]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[47]  Yingying Fan,et al.  Interaction pursuit in high-dimensional multi-response regression via distance correlation , 2016, 1605.03315.

[48]  Holger Dette,et al.  Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis , 2011, 1111.7205.

[49]  Gábor J. Székely,et al.  The distance correlation t-test of independence in high dimension , 2013, J. Multivar. Anal..

[50]  Dag Tjøstheim,et al.  Using local Gaussian correlation in a nonlinear re-examination of financial contagion , 2014 .

[51]  Le Song,et al.  Feature Selection via Dependence Maximization , 2012, J. Mach. Learn. Res..

[52]  Ta-Hsin Li,et al.  Laplace Periodogram for Time Series Analysis , 2008 .

[53]  L. Bagnato,et al.  Testing Serial Independence via Density-Based Measures of Divergence , 2014 .

[54]  J. Kiefer,et al.  DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION , 1961 .

[55]  Maria L. Rizzo,et al.  Energy statistics: A class of statistics based on distances , 2013 .

[56]  Konstantinos Fokianos,et al.  Testing independence for multivariate time series via the auto‐distance correlation matrix , 2018 .

[57]  J. Buhmann,et al.  Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome , 2015, Molecular systems biology.

[58]  R. Lyons Distance covariance in metric spaces , 2011, 1106.5758.

[59]  Bruno R'emillard DISCUSSION OF: BROWNIAN DISTANCE COVARIANCE , 2009, 1010.0838.

[60]  Dominic Edelmann,et al.  Distance correlation coefficients for Lancaster distributions , 2015, J. Multivar. Anal..

[61]  Runze Li,et al.  Feature Screening via Distance Correlation Learning , 2012, Journal of the American Statistical Association.

[62]  J. R. M. Hosking,et al.  The Multivariate Portmanteau Statistic , 1980 .

[63]  Boris Podobnik,et al.  Systemic risk and causality dynamics of the world international shipping market , 2014 .

[64]  X. Shao,et al.  The Dependent Wild Bootstrap , 2010 .

[65]  Xiaofeng Shao,et al.  Martingale Difference Correlation and Its Use in High-Dimensional Variable Screening , 2014 .

[66]  Yongmiao Hong,et al.  Consistent Testing for Serial Correlation of Unknown Form , 1996 .

[67]  Maria L. Rizzo,et al.  Partial Distance Correlation with Methods for Dissimilarities , 2013, 1310.2926.

[68]  Interpreting the Distance Correlation Results for the COMBO-17 Survey , 2014, 1402.3230.

[69]  Yi Liu,et al.  Model-free feature screening for ultrahigh-dimensional data conditional on some variables , 2018 .

[70]  X. Shao,et al.  Testing mutual independence in high dimension via distance covariance , 2016, 1609.09380.

[71]  Kenji Fukumizu,et al.  Equivalence of distance-based and RKHS-based statistics in hypothesis testing , 2012, ArXiv.

[72]  Xiaofeng Shao,et al.  Partial martingale difference correlation , 2015 .

[73]  Bernhard Schölkopf,et al.  Kernel Methods for Measuring Independence , 2005, J. Mach. Learn. Res..

[74]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[75]  Jochen Fiedler Distances, Gegenbauer expansions, curls, and dimples: On dependence measures for random fields , 2016 .

[76]  Liping Zhu,et al.  An iterative approach to distance correlation-based sure independence screening† , 2015 .

[77]  G. Wahba,et al.  Using distance covariance for improved variable selection , 2014 .

[78]  Chetan Tonde,et al.  Supervised feature learning via dependency maximization , 2016 .

[79]  Gábor J. Székely,et al.  Brownian Covariance and Central Limit Theorem for Stationary Sequences , 2011 .

[80]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[81]  Michael R Kosorok On Brownian Distance Covariance and High Dimensional Data. , 2009, The annals of applied statistics.

[82]  G. Samorodnitsky,et al.  Distance covariance for stochastic processes , 2017, 1703.10283.

[83]  Xiaoming Huo,et al.  Fast Computing for Distance Covariance , 2014, Technometrics.

[84]  Konstantinos Fokianos,et al.  dCovTS: Distance Covariance/Correlation for Time Series , 2016, R J..

[85]  Dag Tjøstheim,et al.  Local Gaussian Autocorrelation and Tests for Serial Independence , 2017 .

[86]  Hans J. Skaug,et al.  A nonparametric test of serial independence based on the empirical distribution function , 1993 .

[87]  Xianyang Zhang,et al.  Distance Metrics for Measuring Joint Dependence with Application to Causal Inference , 2017, Journal of the American Statistical Association.

[88]  Anne Leucht,et al.  Dependent wild bootstrap for degenerate U- and V-statistics , 2013, J. Multivar. Anal..

[89]  P. Robinson,et al.  Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression , 1991 .

[90]  D. Richards,et al.  DISTANCE CORRELATION METHODS FOR DISCOVERING ASSOCIATIONS IN LARGE ASTROPHYSICAL DATABASES , 2013, 1308.3925.

[91]  D. Tj⊘stheim Measures of Dependence and Tests of Independence , 1996 .

[92]  Zhou Zhou Measuring nonlinear dependence in time‐series, a distance correlation approach , 2012 .

[93]  Heping Zhang,et al.  Conditional Distance Correlation , 2015, Journal of the American Statistical Association.