Circuit modeling of multiband high-impedance surface absorbers in the microwave regime

Inthispaper,wepresentasimplecircuitmodeltostudytheabsorptionofelectromagneticwavesbyamultilayer structure with a high impedance surface in the microwave regime. The absorber consists of a stack of twodimensional arrays of sub-wavelength meshes or patches separated by dielectric slabs and backed by a metallic ground plane, with a single resistive sheet placed on the top layer. We observe the appearance of low-frequency r

[1]  Huaiwu Zhang,et al.  Dual band terahertz metamaterial absorber: Design, fabrication, and characterization , 2009 .

[2]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[3]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[4]  Willie J Padilla,et al.  Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging , 2008, 0807.3390.

[5]  R. Ulrich Far-infrared properties of metallic mesh and its complementary structure , 1967 .

[6]  S. Tretyakov,et al.  Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches , 2007, IEEE Transactions on Antennas and Propagation.

[7]  G. Manara,et al.  Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[8]  Qingli Zhou,et al.  Optical property and spectroscopy studies on the explosive 2,4,6-trinitro-1,3,5-trihydroxybenzene in the terahertz range , 2008 .

[9]  F. Costa,et al.  A Thin Electromagnetic Absorber for Wide Incidence Angles and Both Polarizations , 2008, IEEE Transactions on Antennas and Propagation.

[10]  V. Fusco,et al.  Thin Radar Absorber Using an Artificial Magnetic Ground Plane , 2005, 2006 European Microwave Conference.

[11]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[12]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[13]  P. de Maagt,et al.  High-impedance surfaces having stable resonance with respect to polarization and incidence angle , 2005, IEEE Transactions on Antennas and Propagation.

[14]  A. Dienstfrey,et al.  A Physical Explanation of Angle-Independent Reflection and Transmission Properties of Metafilms/Metasurfaces , 2009, IEEE Antennas and Wireless Propagation Letters.

[15]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[16]  Sergei A. Tretyakov,et al.  Thin absorbing structure for all incidence angles based on the use of a high‐impedance surface , 2003 .

[17]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[18]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[19]  Ronan Sauleau,et al.  Study of Fabry-Perot Cavities with Metal Mesh Mirrors Using Equivalent Circuit Models. Comparison with Experimental Results in the 60 GHz Band , 1998 .

[20]  J. Kliava,et al.  Multiband electron spin resonance spectroscopy of rare-earth S ions in glasses: the isospectral frequency ratio method , 1991 .

[21]  F Bilotti,et al.  Design of Miniaturized Narrowband Absorbers Based on Resonant-Magnetic Inclusions , 2011, IEEE Transactions on Electromagnetic Compatibility.

[22]  Costas M. Soukoulis,et al.  Wide-angle and polarization-independent chiral metamaterial absorber , 2009, 1005.3869.

[23]  F. Medina,et al.  Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes. , 2010, Optics express.

[24]  Naichang Yuan,et al.  Characteristics estimation for high‐impedance surfaces based ultrathin radar absorber , 2009 .

[25]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[26]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[27]  D. Werner,et al.  Magnetic loading of EBG AMC ground planes and ultrathin absorbers for improved bandwidth performance and reduced size , 2006 .

[28]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .

[29]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[30]  Qiang Gao,et al.  A novel radar‐absorbing‐material based on EBG structure , 2005 .

[31]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .