A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms

[1]  David C. Tank,et al.  Three keys to the radiation of angiosperms into freezing environments , 2013, Nature.

[2]  T. Bisseling,et al.  Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism. , 2014, The New phytologist.

[3]  Daniel E. Deatherage,et al.  Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[4]  Chun Xing Li,et al.  Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the Papilionoideae. , 2013, Molecular biology and evolution.

[5]  Jefferson S. Hall,et al.  Key role of symbiotic dinitrogen fixation in tropical forest secondary succession , 2013, Nature.

[6]  J. Qiu,et al.  Nonlegumes Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response , 2013, Science.

[7]  M. Donoghue,et al.  Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. , 2013, Systematic biology.

[8]  Andreas Wagner,et al.  A latent capacity for evolutionary innovation through exaptation in metabolic systems , 2013, Nature.

[9]  S. Reed,et al.  Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  G. Bécard,et al.  Evolution of the plant-microbe symbiotic 'toolkit'. , 2013, Trends in plant science.

[11]  J. Joy,et al.  Symbiosis catalyses niche expansion and diversification , 2013, Proceedings of the Royal Society B: Biological Sciences.

[12]  Daniel J. Murphy,et al.  Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades , 2013 .

[13]  G. Oldroyd Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants , 2013, Nature Reviews Microbiology.

[14]  Leishman,et al.  Data from: Three keys to the radiation of angiosperms into freezing environments , 2013 .

[15]  K. Gardens The Plant List , 2013 .

[16]  Zhenyuan Lu,et al.  The taxonomic name resolution service: an online tool for automated standardization of plant names , 2013, BMC Bioinformatics.

[17]  M. Sanderson,et al.  LOCATING EVOLUTIONARY PRECURSORS ON A PHYLOGENETIC TREE , 2012, Evolution; international journal of organic evolution.

[18]  Jeffrey E. Barrick,et al.  Genomic Analysis of a Key Innovation in an Experimental E. coli Population , 2012, Nature.

[19]  P. Edger,et al.  Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. , 2012, Current opinion in plant biology.

[20]  K. Demchenko,et al.  The diversity of actinorhizal symbiosis , 2012, Protoplasma.

[21]  E. Abouheif,et al.  Ancestral Developmental Potential Facilitates Parallel Evolution in Ants , 2012, Science.

[22]  A. Edwards,et al.  Legume pectate lyase required for root infection by rhizobia , 2011, Proceedings of the National Academy of Sciences.

[23]  T. Bisseling,et al.  A Phylogenetic Strategy Based on a Legume-Specific Whole Genome Duplication Yields Symbiotic Cytokinin Type-A Response Regulators1[C][W][OA] , 2011, Plant Physiology.

[24]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[25]  J. Doyle Phylogenetic perspectives on the origins of nodulation. , 2011, Molecular plant-microbe interactions : MPMI.

[26]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[27]  A. Good,et al.  Future Prospects for Cereals That Fix Nitrogen , 2011, Science.

[28]  R. Wing,et al.  LysM-Type Mycorrhizal Receptor Recruited for Rhizobium Symbiosis in Nonlegume Parasponia , 2011, Science.

[29]  R. Denison,et al.  Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. , 2010, The New phytologist.

[30]  R. Scotland,et al.  Deep homology: A view from systematics , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  J. Batut,et al.  Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? , 2009, Trends in microbiology.

[32]  J. Sprent Legume Nodulation: A Global Perspective , 2009 .

[33]  Maria J. Harrison,et al.  Reprogramming Plant Cells for Endosymbiosis , 2009, Science.

[34]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[35]  S. Carroll,et al.  Deep homology and the origins of evolutionary novelty , 2009, Nature.

[36]  A. Buckling,et al.  The Beagle in a bottle , 2009, Nature.

[37]  M. Donoghue,et al.  Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches , 2009, BMC Evolutionary Biology.

[38]  N. Dubilier,et al.  Symbiotic diversity in marine animals: the art of harnessing chemosynthesis , 2008, Nature Reviews Microbiology.

[39]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[40]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[41]  P. Herendeen,et al.  Phylogenetic patterns and diversification in the caesalpinioid legumes , 2008 .

[42]  R. Lenski,et al.  Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli , 2008 .

[43]  Laurent Laplaze,et al.  SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria , 2008, Proceedings of the National Academy of Sciences.

[44]  Katharina Markmann,et al.  Functional Adaptation of a Plant Receptor- Kinase Paved the Way for the Evolution of Intracellular Root Symbioses with Bacteria , 2008, PLoS biology.

[45]  Srinivas Aluru,et al.  Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[46]  G. Wagner The developmental genetics of homology , 2007, Nature Reviews Genetics.

[47]  N. Moran,et al.  Colloquium Papers: Symbiosis as an adaptive process and source of phenotypic complexity , 2007 .

[48]  Usda-Ars Germplasm Resources Information Network (GRIN). Online Database , 2007 .

[49]  Ziheng Yang,et al.  Computational Molecular Evolution , 2006 .

[50]  Natalia N. Ivanova,et al.  Symbiosis insights through metagenomic analysis of a microbial consortium , 2006, Nature.

[51]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[52]  J. Sprent West African legumes: the role of nodulation and nitrogen fixation. , 2005, The New phytologist.

[53]  E. Wagenmakers,et al.  AIC model selection using Akaike weights , 2004, Psychonomic bulletin & review.

[54]  J. Ladha,et al.  Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? , 1995, Plant and Soil.

[55]  W. Fitch,et al.  An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution , 1970, Biochemical Genetics.

[56]  S. Tabata,et al.  Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases , 2003, Nature.

[57]  S. Tabata,et al.  A plant receptor-like kinase required for both bacterial and fungal symbiosis , 2002, Nature.

[58]  J. Sprent Nodulation in Legumes , 2000 .

[59]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Soltis,et al.  Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.