Inferring User's Preferences using Ontologies

We consider recommender systems that filter information and only show the most preferred items. Good recommendations can be provided only when an accurate model of the user's preferences is available. We propose a novel technique for filling in missing elements of a user's preference model using the knowledge captured in an ontology. Furthermore, we show through experiments on the MovieLens data set that our model achieves a high prediction accuracy and personalization level when little about the user's preferences is known.

[1]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Xin Jin,et al.  Semantically Enhanced Collaborative Filtering on the Web , 2003, EWMF.

[3]  Sung-Hyon Myaeng,et al.  Clustering for probabilistic model estimation for CF , 2005, WWW '05.

[4]  Alan F. Smeaton,et al.  Improving the Quality of the Personalized Electronic Program Guide , 2004, User Modeling and User-Adapted Interaction.

[5]  Barry Smyth,et al.  Case-Based User Profiling for Content Personalisation , 2000, AH.

[6]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[7]  Peter Walley,et al.  Measures of Uncertainty in Expert Systems , 1996, Artif. Intell..

[8]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[9]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[10]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[11]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[12]  John B. Kidd,et al.  Decisions with Multiple Objectives—Preferences and Value Tradeoffs , 1977 .

[13]  Troels Andreasen,et al.  Similarity Graphs , 2003, ISMIS.

[14]  Troels Andreasen,et al.  Similarity graphs: LNAI 2871 , 2003 .

[15]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[16]  Stuart E. Middleton,et al.  Ontological user profiling in recommender systems , 2004, TOIS.