Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation

Abstract This paper makes attempts to perform multi-objective optimization on the solar-powered Stirling engine with high temperature differential. A new model was proposed based on the finite-time thermodynamic. Furthermore, the thermal efficiency of the solar Stirling system with a rate of finite heat transfer, regenerative heat loss, the output power, finite regeneration process time and conductive thermal bridging loss is specified. The thermal efficiency, entransy loss rate and power output have been maximized simultaneously for a dish-Stirling system and entropy generation’s rate in the engine minimized via using thermodynamic analysis and NSGA-II algorithm. To specify the optimum values of the above mentioned parameters three well known decision making methods have been employed. Finally, an error analysis was applied on the outputs gained from each decision makers.

[1]  Bahri Sahin,et al.  Performance analysis of an endoreversible heat engine based on a new thermoeconomic optimization criterion , 2001 .

[2]  Hoseyn Sayyaadi,et al.  Optimization of Output Power and Thermal Efficiency of Solar‐Dish Stirling Engine Using Finite Time Thermodynamic Analysis , 2015 .

[3]  Fengrui Sun,et al.  Constructal entransy dissipation minimization for 'volume-point' heat conduction , 2008 .

[4]  Robert U. Ayres,et al.  Alternatives To The Internal Combustion Engine , 1972 .

[5]  Yasin Ust,et al.  Optimum operating conditions of irreversible solar driven heat engines , 2006 .

[6]  Fang Yuan,et al.  Two energy conservation principles in convective heat transfer optimization , 2011 .

[7]  Amir H. Mohammadi,et al.  Optimisation of the thermodynamic performance of the Stirling engine , 2016 .

[8]  Hoseyn Sayyaadi,et al.  Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss , 2013 .

[9]  Gang Liu,et al.  Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making , 2015 .

[10]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[11]  XinGang Liang,et al.  Entransy loss in thermodynamic processes and its application , 2012 .

[12]  Her-Terng Yau,et al.  Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations , 2012 .

[13]  Serge Domenech,et al.  Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology , 2010 .

[14]  XinGang Liang,et al.  Entransy—A physical quantity describing heat transfer ability , 2007 .

[15]  Baris Sahin Exergy optimization for an endoreversible cogeneration cycle , 1997 .

[16]  XueTao Cheng,et al.  Entransy flux of thermal radiation and its application to enclosures with opaque surfaces , 2011 .

[17]  Wen Lih Chen,et al.  An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine , 2014 .

[18]  David L. Olson,et al.  Decision Aids for Selection Problems , 1995 .

[19]  Wen-Quan Tao,et al.  Effectiveness–thermal resistance method for heat exchanger design and analysis , 2010 .

[20]  Amir H. Mohammadi,et al.  Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle , 2014 .

[21]  Ning Pan,et al.  Optimization principles for convective heat transfer , 2009 .

[22]  V. A. Mazur,et al.  Fuzzy thermoeconomic optimization of energy-transforming systems , 2007 .

[23]  Amir H. Mohammadi,et al.  Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm , 2013 .

[24]  Somchai Wongwises,et al.  Optimum absorber temperature of a once-reflecting full conical concentrator of a low temperature differential Stirling engine , 2005 .

[25]  Fernando Angulo-Brown,et al.  An ecological optimization criterion for finite‐time heat engines , 1991 .

[26]  Chih Wu,et al.  Finite-time power limit for solar-radiant Ericsson engines in space applications , 1998 .

[27]  Selahattın Gök Tun Finite-time optimization of a solar-driven heat engine , 1996 .

[28]  Xingang Liang,et al.  Computation of effectiveness of two-stream heat exchanger networks based on concepts of entropy generation, entransy dissipation and entransy-dissipation-based thermal resistance , 2012 .

[29]  Mohammad Ali Ahmadi,et al.  Thermodynamic analysis and optimisation of an irreversible radiative-type heat engine by using non-dominated sorting genetic algorithm , 2016 .

[30]  Andreas Poullikkas,et al.  Parametric analysis for the installation of solar dish technologies in Mediterranean regions , 2010 .

[31]  S. C. Kaushik,et al.  Finite time thermodynamic evaluation of irreversible Ericsson and Stirling heat engines , 2001 .

[32]  Reiner Buck,et al.  Dish-Stirling Systems: An Overview of Development and Status , 2003 .

[33]  V. Badescu Optimizing of Stirling and Ericsson cycles using solar radiation , 1992 .

[34]  Mohammad Hossein Ahmadi,et al.  Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas , 2015 .

[35]  Zijun Yan,et al.  Comment on ‘‘An ecological optimization criterion for finite‐time heat engines’’ [J. Appl. Phys. 69, 7465 (1991)] , 1993 .

[36]  Iskander Tlili,et al.  Analysis and design consideration of mean temperature differential Stirling engine for solar application , 2008 .

[37]  Arjun Sharma,et al.  Finite time thermodynamic analysis and optimization of solar-dish Stirling heat engine with regenerative losses , 2011 .

[38]  Mingtian Xu,et al.  The Application of Entransy Dissipation Theory in Optimization Design of Heat Exchanger , 2012 .

[39]  Majid Amidpour,et al.  Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm , 2009 .

[40]  Joachim Nitsch,et al.  Solar thermal power plants for solar countries -- Technology, economics and market potential , 1995 .

[41]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[42]  Mohammad Ali Ahmadi,et al.  Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle , 2015 .

[43]  Michel Feidt,et al.  Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm , 2015 .

[44]  B. Andresen,et al.  Thermodynamics in finite time. I. The step-Carnot cycle , 1977 .

[45]  Sidhartha Panda,et al.  Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II , 2013 .

[46]  Bahri Sahin,et al.  Finite size thermoeconomic optimization for irreversible heat engines , 2003 .

[47]  V. S. Trukhov,et al.  Energy balance of autonomous solar power plant with the Stirling engine , 1997 .

[48]  S. C. Kaushik,et al.  Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses , 2000 .

[49]  Peter Salamon,et al.  Finite time thermodynamics: Optimal expansion of a heated working fluid , 1982 .

[50]  Mohammad Ali Ahmadi,et al.  Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs) , 2015 .

[51]  Somchai Wongwises,et al.  A four power-piston low-temperature differential Stirling engine using simulated solar energy as a heat source , 2008 .

[52]  Ahmet Z. Sahin Finite-time thermodynamic analysis of a solar driven heat engine , 2001 .

[53]  Michael Jerry Antal,et al.  The flash pyrolysis of cellulosic materials using concentrated visible light , 1984 .

[54]  Alibakhsh Kasaeian,et al.  Multi-objective optimization of Stirling engine using non-ideal adiabatic method , 2014 .

[55]  Chih Wu,et al.  Ecological optimisation of an irreversible Stirling heat engine , 2001 .

[56]  Andrea Toffolo,et al.  Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design , 2004 .

[57]  S. Arnalte,et al.  Solar dish-Stirling system optimisation with a doubly fed induction generator , 2012 .

[58]  Somchai Wongwises,et al.  Performance of a twin power piston low temperature differential Stirling engine powered by a solar simulator , 2007 .

[59]  Zhou Bing,et al.  Power output analyses and optimizations of the Stirling cycle , 2013 .

[60]  Amir H. Mohammadi,et al.  Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm , 2013 .

[61]  A. Chattopadhyay,et al.  Heat and thermodynamics , 1952 .

[62]  Michel Feidt,et al.  Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization of performance for irreversible four-temperature-level refrigeration , 2015 .

[63]  Chih Wu,et al.  Power optimization of an endoreversible stirling cycle with regeneration , 1994 .

[64]  Wang Weiwei,et al.  Optimization of solar-powered Stirling heat engine with finite-time thermodynamics , 2011 .

[65]  H. G. Ladas,et al.  Finite-time view of the stirling engine , 1994 .

[66]  Mehdi Mehrpooya,et al.  Thermodynamic optimization of Stirling heat pump based on multiple criteria , 2014 .

[67]  Jian Lin,et al.  Optimum performance characteristics of a solar-driven Stirling heat engine system , 2015 .

[68]  Zeng-Yuan Guo,et al.  Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization , 2009 .

[69]  Emin Açıkkalp,et al.  Methods used for evaluation of actual power generating thermal cycles and comparing them , 2015 .

[70]  Ning Pan,et al.  A comparison of optimization theories for energy conservation in heat exchanger groups , 2011 .

[71]  Bjarne Andresen,et al.  Thermodynamics in finite time , 1984 .

[72]  Suresh V. Garimella,et al.  Multi-objective optimization of sustainable single-effect water/Lithium Bromide absorption cycle , 2012 .

[73]  Stanislaw Sieniutycz,et al.  Finite time generalization of thermal exergy , 1998 .

[74]  Somchai Wongwises,et al.  A review of solar-powered Stirling engines and low temperature differential Stirling engines , 2003 .

[75]  Milad Ashouri,et al.  Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump , 2015 .

[76]  Jincan Chen,et al.  Efficiency bound of a solar-driven Stirling heat engine system , 1998 .

[77]  Hoseyn Sayyaadi,et al.  Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power , 2013 .

[78]  J. R. Senft,et al.  Ringbom Stirling Engines , 1993 .

[79]  Amir H. Mohammadi,et al.  Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria , 2013 .

[80]  M. Ahmadi,et al.  Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis , 2013 .

[81]  XueTao Cheng,et al.  Analyses of entropy generation and heat entransy loss in heat transfer and heat-work conversion , 2013 .

[82]  Dulal Ch. Das,et al.  Small signal stability analysis of dish-Stirling solar thermal based autonomous hybrid energy system , 2014 .

[83]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[84]  Qun Chen,et al.  Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation , 2008 .

[85]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[86]  Jincan Chen,et al.  Optimization of a solar‐driven heat engine , 1992 .

[87]  XinGang Liang,et al.  Application of entransy dissipation extremum principle in radiative heat transfer optimization , 2008 .

[88]  E. Ozturk,et al.  Nonlinear intersubband absorption and refractive index change in n-type δ-doped GaAs for different donor distributions , 2015 .

[89]  Fatih Aksoy,et al.  Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism , 2013 .