On the Strong Metric Dimension of Annihilator Graphs of Commutative Rings

For a connected graph G ( V ,  E ), a vertex $$w\in V(G)$$ w ∈ V ( G ) strongly resolves two vertices $$u, v \in V(G)$$ u , v ∈ V ( G ) if there exists a shortest $$u-w$$ u - w path containing v or a shortest $$v-w$$ v - w path containing u . A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S . The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G . Let R be a commutative ring with identity, and let Z ( R ) be the set of zero-divisors of R . The annihilator graph of R is a simple graph with the vertex set $$Z(R)^*=Z(R){\setminus }\{0\}$$ Z ( R ) ∗ = Z ( R ) \ { 0 } , and two distinct vertices x and y are adjacent if and only if $$ann_R(xy)\ne ann_R(x)\cup ann_R(y)$$ a n n R ( x y ) ≠ a n n R ( x ) ∪ a n n R ( y ) . In this paper, we study the strong metric dimension of annihilator graphs associated with commutative rings and some strong metric dimension formulae for annihilator graphs are given.

[1]  S. Pirzada,et al.  On the metric dimension of a zero-divisor graph , 2017 .

[2]  R. Nikandish,et al.  Coloring of the annihilator graph of a commutative ring , 2016 .

[3]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[4]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[5]  S. Pirzada,et al.  On locating numbers and codes of zero divisor graphs associated with commutative rings , 2016 .

[6]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of the strong products of graphs , 2014 .

[7]  S. Pirzada,et al.  Locating sets and numbers of graphs associated to commutative rings , 2014 .

[8]  David F. Anderson,et al.  The Zero-Divisor Graph of a Commutative Ring☆ , 1999 .

[9]  Ortrud R. Oellermann,et al.  The strong metric dimension of graphs and digraphs , 2007, Discret. Appl. Math..

[10]  S. Pirzada,et al.  ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS , 2016 .

[11]  David Dolžan The Metric Dimension of the Total Graph of a Finite Commutative Ring , 2016, Canadian Mathematical Bulletin.

[12]  S. Pirzada,et al.  On strong metric dimension of zero-divisor graphs of rings , 2019 .

[13]  D. West Introduction to Graph Theory , 1995 .

[14]  Kaishun Wang,et al.  The strong metric dimension of the power graph of a finite group , 2016, Discret. Appl. Math..

[15]  M. Salman,et al.  On the Commuting Graph of Dihedral Group , 2016 .

[16]  Ayman Badawi On the Annihilator Graph of a Commutative Ring , 2014 .

[17]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of corona product graphs and join graphs , 2012, Discret. Appl. Math..

[18]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..