Remote sensing techniques for archaeology: a state of art analysis of SAR methods for land movement

The RESEARCH project (Remote Sensing techniques for Archaeology; H2020-MSCA-RISE, 2018-2022, grant agreement: 823987) addresses the design and development of a multi-task platform, combining advanced remote sensing technologies with Geographical Information System (GIS) application for mapping and long-term monitoring of Archaeological Heritage (AH) at risk, to identify changes due to climate change and anthropic pressures. The Earth Observation (EO) processing chain will address significant risks affecting AH including soil erosion, land movement and land-use change. The paper describes one of the main goals of RESEARCH project. It refers to a state of the art analysis of Synthetic Aperture Radar (SAR) methods applied to the land movement detection such as landslide and subsidence. Satellite SAR is a rapidly evolving remote sensing technology that offers a high potential for detecting, documenting and monitoring heritage targets. Satellite SAR interferometry (InSAR), Differential Interferometry (DinSAR) and Persistent Scatterer Interferometry (PSI) are different techniques that, depending on the available data and the required accuracy, can be used for deformation monitoring of AH.

[1]  Daniele Inaudi,et al.  Long-term deformation monitoring of historical constructions with fiber optic sensors , 2001 .

[2]  Fabio Rocca,et al.  SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Huadong Guo,et al.  Differential Radar Interferometry for Structural and Ground Deformation Monitoring: A New Tool for the Conservation and Sustainability of Cultural Heritage Sites , 2015 .

[4]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[5]  E. Luneburg,et al.  Polarimetry in remote sensing: basic and applied concepts , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[6]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[7]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[8]  Ni-Bin Chang,et al.  Applications of SAR Interferometry in Earth and Environmental Science Research , 2009, Sensors.

[9]  J. L. van Genderen,et al.  SAR interferometry : issues, techniques, applications , 1996 .

[10]  M. Crosetto,et al.  Persistent Scatterer Interferometry: Potential, Limits and Initial C- and X-band Comparison , 2010 .

[11]  Núria Devanthéry,et al.  Persistent Scatterer Interferometry: A review , 2016 .

[12]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[13]  GROUND DEFORMATION MONITORING IN CULTURAL HERITAGE AREAS BY TIME SERIES SAR INTERFEROMETRY : THE CASE OF ANCIENT OLYMPIA SITE , .

[14]  D. Massonnet,et al.  Deformation measurements using SAR interferometry: potential and limitations , 1998 .

[15]  Weixian Tan,et al.  Time- and Space-Varying Atmospheric Phase Correction in Discontinuous Ground-Based Synthetic Aperture Radar Deformation Monitoring , 2018, Sensors.

[16]  Janusz Wasowski,et al.  Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry , 2006 .

[17]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[18]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[19]  K. Feigl,et al.  Radar interferometric mapping of deformation in the year after the Landers earthquake , 1994, Nature.

[20]  E. Pottier,et al.  New Research in Polarimetric SAR Technique for Archaeological Purposes using ALOS PALSAR Data , 2013 .

[21]  P. Visser,et al.  Precise orbit determination and gravity field improvement for the ERS satellites , 1998 .

[22]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[24]  Gabriele Guidi,et al.  Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[26]  Fulong Chen,et al.  An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring , 2017 .

[27]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[28]  B. Chapman,et al.  Discovering ancient Maya settlements using airborne radar elevation data , 2011 .

[29]  R. Lasaponara,et al.  Satellite Synthetic Aperture Radar in Archaeology and Cultural Landscape: An Overview , 2013 .