Cross-reactive neutralizing humoral immunity in HIV-1 disease: dynamics of host-pathogen interactions

Marit van Gils beschrijft de interactie tussen hiv en het menselijk afweersysteem, in het bijzonder de antistofreactie. Twee tot drie jaar na infectie met hiv subtype B is het serum (bloedvloeistof) van ongeveer dertig procent van de patienten in staat om hiv-virussen van verschillende subtypen te neutraliseren. Dit blijkt sterk samen te hangen met een hoge virale load en een relatief laag aantal CD4+ T-cellen (onderdeel van het afweersysteem) in het bloed. Op de lange termijn heeft het neutraliserende vermogen van serum echter geen invloed op het ziekteverloop. Dit komt waarschijnlijk doordat hiv relatief gemakkelijk kan ontsnappen aan neutraliserende antistoffen, door het verlengen van variabele regio’s in het virale envelopeiwit (aan de buitenkant van het virus) en een toename van het aantal suikergroepen in deze regio’s.

[1]  J. Mascola,et al.  147 Rational Design of Envelope Surface Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1 , 2011 .

[2]  Christopher B Wilson,et al.  A decade of vaccines: Integrating immunology and vaccinology for rational vaccine design. , 2010, Immunity.

[3]  M Juliana McElrath,et al.  Induction of immunity to human immunodeficiency virus type-1 by vaccination. , 2010, Immunity.

[4]  E. Bunnik,et al.  Adaptation of HIV-1 envelope gp120 to humoral immunity at a population level , 2010, Nature Medicine.

[5]  M. Nussenzweig,et al.  Human anti–HIV-neutralizing antibodies frequently target a conserved epitope essential for viral fitness , 2010 .

[6]  Mario Roederer,et al.  Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1 , 2010, Science.

[7]  Tongqing Zhou,et al.  Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01 , 2010, Science.

[8]  T. Wrin,et al.  Mutation at a Single Position in the V2 Domain of the HIV-1 Envelope Protein Confers Neutralization Sensitivity to a Highly Neutralization-Resistant Virus , 2010, Journal of Virology.

[9]  Dennis R. Burton,et al.  A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals , 2010, PLoS pathogens.

[10]  D. Burton,et al.  Rational antibody-based HIV-1 vaccine design: current approaches and future directions. , 2010, Current opinion in immunology.

[11]  L. Stamatatos,et al.  Epitope specificities of broadly neutralizing plasmas from HIV-1 infected subjects. , 2010, Vaccine.

[12]  R. Andino,et al.  Rationalizing the development of live attenuated virus vaccines , 2010, Nature Biotechnology.

[13]  E. Bunnik,et al.  Cross-reactive neutralizing humoral immunity does not protect from HIV type 1 disease progression. , 2010, The Journal of infectious diseases.

[14]  Ron Diskin,et al.  Structure of a clade C HIV-1 gp120 bound to CD4 and CD4-induced antibody reveals anti-CD4 polyreactivity , 2010, Nature Structural &Molecular Biology.

[15]  David C Montefiori,et al.  The role of antibodies in HIV vaccines. , 2010, Annual review of immunology.

[16]  M. McElrath,et al.  HIV vaccines: mosaic approach to virus diversity , 2010, Nature Medicine.

[17]  E. Bunnik,et al.  Escape from autologous humoral immunity of HIV-1 is not associated with a decrease in replicative capacity. , 2010, Virology.

[18]  Terri Wrin,et al.  Rapid Escape from Preserved Cross-Reactive Neutralizing Humoral Immunity without Loss of Viral Fitness in HIV-1-Infected Progressors and Long-Term Nonprogressors , 2010, Journal of Virology.

[19]  Jerome H. Kim,et al.  Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. , 2009, The New England journal of medicine.

[20]  Persephone Borrow,et al.  The immune response during acute HIV-1 infection: clues for vaccine development , 2009, Nature Reviews Immunology.

[21]  H. Schuitemaker,et al.  Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression , 2009, AIDS.

[22]  Holly Janes,et al.  Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies , 2009, Journal of Virology.

[23]  D. Burton,et al.  Broadly Neutralizing Monoclonal Antibodies 2F5 and 4E10 Directed against the Human Immunodeficiency Virus Type 1 gp41 Membrane-Proximal External Region Protect against Mucosal Challenge by Simian-Human Immunodeficiency Virus SHIVBa-L , 2009, Journal of Virology.

[24]  Pham Phung,et al.  Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target , 2009, Science.

[25]  J. Binley Specificities of broadly neutralizing anti-HIV-1 sera , 2009, Current opinion in HIV and AIDS.

[26]  S Gnanakaran,et al.  The implications of patterns in HIV diversity for neutralizing antibody induction and susceptibility , 2009, Current opinion in HIV and AIDS.

[27]  D. Forthal,et al.  Fc receptor-mediated antiviral antibodies , 2009, Current opinion in HIV and AIDS.

[28]  Lynn Morris,et al.  Limited Neutralizing Antibody Specificities Drive Neutralization Escape in Early HIV-1 Subtype C Infection , 2009, PLoS pathogens.

[29]  S. Gnanakaran,et al.  Escape from Autologous Neutralizing Antibodies in Acute/Early Subtype C HIV-1 Infection Requires Multiple Pathways , 2009, PLoS pathogens.

[30]  Pascal Poignard,et al.  Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques , 2009, Nature Medicine.

[31]  Lynn Morris,et al.  Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? , 2009, Nature Medicine.

[32]  D. Burton,et al.  A Conformational Switch in Human Immunodeficiency Virus gp41 Revealed by the Structures of Overlapping Epitopes Recognized by Neutralizing Antibodies , 2009, Journal of Virology.

[33]  Todd M. Allen,et al.  HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphocyte Recognition , 2009, Journal of Virology.

[34]  Terri Wrin,et al.  Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm , 2009, Journal of Virology.

[35]  D. Burton,et al.  Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers , 2009, PLoS pathogens.

[36]  Richard T. Wyatt,et al.  Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals , 2009, Nature.

[37]  R. Redfield,et al.  Discordant memory B cell and circulating anti-Env antibody responses in HIV-1 infection , 2009, Proceedings of the National Academy of Sciences.

[38]  D. Hazuda,et al.  The Challenge of Finding a Cure for HIV Infection , 2009, Science.

[39]  M. Cavassini,et al.  Immunogenicity and safety of yellow fever vaccination for 102 HIV-infected patients. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[40]  Q. Sattentau,et al.  International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II , 2009, PloS one.

[41]  F. Pereyra,et al.  HLA-Associated Viral Mutations Are Common in Human Immunodeficiency Virus Type 1 Elite Controllers , 2009, Journal of Virology.

[42]  Bin Li,et al.  HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphotye Recognition , 2008, Journal of Virology.

[43]  M. Essex,et al.  Reduced Viral Replication Capacity of Human Immunodeficiency Virus Type 1 Subtype C Caused by Cytotoxic-T-Lymphocyte Escape Mutations in HLA-B57 Epitopes of Capsid Protein , 2008, Journal of Virology.

[44]  B. Korber,et al.  Expanded Breadth of the T-Cell Response to Mosaic Human Immunodeficiency Virus Type 1 Envelope DNA Vaccination , 2008, Journal of Virology.

[45]  J. Hoxie,et al.  Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly Reactive HIV-1 V3-Specific Antibodies in Human Plasma , 2008, Journal of Virology.

[46]  John R. Mascola,et al.  Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals , 2008, Journal of Virology.

[47]  Xuesong Yu,et al.  Factors Associated with the Development of Cross-Reactive Neutralizing Antibodies during Human Immunodeficiency Virus Type 1 Infection , 2008, Journal of Virology.

[48]  J. Mascola,et al.  Frequency and Phenotype of Human Immunodeficiency Virus Envelope-Specific B Cells from Patients with Broadly Cross-Neutralizing Antibodies , 2008, Journal of Virology.

[49]  Vicki C. Ashley,et al.  Initial B-Cell Responses to Transmitted Human Immunodeficiency Virus Type 1: Virion-Binding Immunoglobulin M (IgM) and IgG Antibodies Followed by Plasma Anti-gp41 Antibodies with Ineffective Control of Initial Viremia , 2008, Journal of Virology.

[50]  Steven Wolinsky,et al.  Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960 , 2008, Nature.

[51]  D. Barouch,et al.  Challenges in the development of an HIV-1 vaccine , 2008, Nature.

[52]  Lynn Morris,et al.  Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C , 2008, Journal of Virology.

[53]  R. Desrosiers,et al.  Importance of the V1/V2 Loop Region of Simian-Human Immunodeficiency Virus Envelope Glycoprotein gp120 in Determining the Strain Specificity of the Neutralizing Antibody Response , 2008, Journal of Virology.

[54]  S. Plotkin,et al.  Vaccines: correlates of vaccine-induced immunity. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[55]  E. Sanders-Buell,et al.  Cross-clade neutralization patterns among HIV-1 strains from the six major clades of the pandemic evaluated and compared in two different models. , 2008, Virology.

[56]  Hanneke Schuitemaker,et al.  Autologous Neutralizing Humoral Immunity and Evolution of the Viral Envelope in the Course of Subtype B Human Immunodeficiency Virus Type 1 Infection , 2008, Journal of Virology.

[57]  Dennis R. Burton,et al.  Toward an AIDS Vaccine , 2008, Science.

[58]  S. Hammer,et al.  The challenge of HIV-1 subtype diversity. , 2008, The New England journal of medicine.

[59]  Terri Wrin,et al.  Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. , 2008, The Journal of infectious diseases.

[60]  J. Sodroski,et al.  The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus , 2008, Nature Reviews Microbiology.

[61]  C. Blish,et al.  Enhancing Exposure of HIV-1 Neutralization Epitopes through Mutations in gp41 , 2008, PLoS medicine.

[62]  L. Morris,et al.  The C3-V4 Region Is a Major Target of Autologous Neutralizing Antibodies in Human Immunodeficiency Virus Type 1 Subtype C Infection , 2007, Journal of Virology.

[63]  L. Stamatatos,et al.  The First Hypervariable Region of the gp120 Env Glycoprotein Defines the Neutralizing Susceptibility of Heterologous Human Immunodeficiency Virus Type 1 Isolates to Neutralizing Antibodies Elicited by the SF162gp140 Immunogen , 2007, Journal of Virology.

[64]  R. Zinkernagel,et al.  “Negative Vaccination” by Specific CD4+ T Cell Tolerisation Enhances Virus-Specific Protective Antibody Responses , 2007, PloS one.

[65]  G. Inchauspé,et al.  Vaccines and immunotherapies against hepatitis B and hepatitis C viruses , 2007, Journal of viral hepatitis.

[66]  Á. McKnight,et al.  Clade specific neutralising vaccines for HIV: an appropriate target? , 2007, Current HIV Research.

[67]  L. Stamatatos,et al.  Prospects of HIV Env modification as an approach to HIV vaccine design. , 2007, Current HIV research.

[68]  A. Pinter Roles of HIV-1 Env variable regions in viral neutralization and vaccine development. , 2007, Current HIV research.

[69]  Hanneke Schuitemaker,et al.  Viral Replication Capacity as a Correlate of HLA B57/B5801-Associated Nonprogressive HIV-1 Infection1 , 2007, The Journal of Immunology.

[70]  T. Wrin,et al.  Development of an HIV-1 Reference Panel of Subtype B Envelope Clones Isolated From the Plasma of Recently Infected Individuals , 2007, Journal of acquired immune deficiency syndromes.

[71]  Mark Connors,et al.  Broad HIV-1 neutralization mediated by CD4-binding site antibodies , 2007, Nature Medicine.

[72]  E. Bunnik,et al.  Escape of human immunodeficiency virus type 1 from broadly neutralizing antibodies is not associated with a reduction of viral replicative capacity in vitro. , 2007, Virology.

[73]  H. Schuitemaker,et al.  Susceptibility of Recently Transmitted Subtype B Human Immunodeficiency Virus Type 1 Variants to Broadly Neutralizing Antibodies , 2007, Journal of Virology.

[74]  S Gnanakaran,et al.  Clade-Specific Differences between Human Immunodeficiency Virus Type 1 Clades B and C: Diversity and Correlations in C3-V4 Regions of gp120 , 2007, Journal of Virology.

[75]  Douglas D. Richman,et al.  Dissecting the Neutralizing Antibody Specificities of Broadly Neutralizing Sera from Human Immunodeficiency Virus Type 1-Infected Donors , 2007, Journal of Virology.

[76]  Hui Li,et al.  Neutralizing Antibody Responses in Acute Human Immunodeficiency Virus Type 1 Subtype C Infection , 2007, Journal of Virology.

[77]  Stephanie A. Jones,et al.  Long-term immunogenicity and efficacy of a 9-valent conjugate pneumococcal vaccine in human immunodeficient virus infected and non-infected children in the absence of a booster dose of vaccine. , 2007, Vaccine.

[78]  Tongqing Zhou,et al.  Structural definition of a conserved neutralization epitope on HIV-1 gp120 , 2007, Nature.

[79]  F. Bibollet-Ruche,et al.  Role of V1V2 and Other Human Immunodeficiency Virus Type 1 Envelope Domains in Resistance to Autologous Neutralization during Clade C Infection , 2007, Journal of Virology.

[80]  J. Overbaugh,et al.  Human Immunodeficiency Virus Type 1 V1-V2 Envelope Loop Sequences Expand and Add Glycosylation Sites over the Course of Infection, and These Modifications Affect Antibody Neutralization Sensitivity , 2006, Journal of Virology.

[81]  Feng Gao,et al.  Genetic and Neutralization Properties of Subtype C Human Immunodeficiency Virus Type 1 Molecular env Clones from Acute and Early Heterosexually Acquired Infections in Southern Africa , 2006, Journal of Virology.

[82]  S. Zolla-Pazner,et al.  Cross-Clade Neutralizing Activity of Human Anti-V3 Monoclonal Antibodies Derived from the Cells of Individuals Infected with Non-B Clades of Human Immunodeficiency Virus Type 1 , 2006, Journal of Virology.

[83]  S. Zolla-Pazner,et al.  Factors Determining the Breadth and Potency of Neutralization by V3-Specific Human Monoclonal Antibodies Derived from Subjects Infected with Clade A or Clade B Strains of Human Immunodeficiency Virus Type 1 , 2006, Journal of Virology.

[84]  D. Montefiori,et al.  Insensitivity of Paediatric HIV-1 Subtype C Viruses to Broadly Neutralising Monoclonal Antibodies Raised against Subtype B , 2006, PLoS medicine.

[85]  Christos J. Petropoulos,et al.  Neutralizing Antibody Responses against Autologous and Heterologous Viruses in Acute versus Chronic Human Immunodeficiency Virus (HIV) Infection: Evidence for a Constraint on the Ability of HIV To Completely Evade Neutralizing Antibody Responses , 2006, Journal of Virology.

[86]  Xiping Wei,et al.  Evidence for Potent Autologous Neutralizing Antibody Titers and Compact Envelopes in Early Infection with Subtype C Human Immunodeficiency Virus Type 1 , 2006, Journal of Virology.

[87]  Marie Paule Kieny,et al.  A review of vaccine research and development: the human immunodeficiency virus (HIV). , 2006, Vaccine.

[88]  B. Walker,et al.  Fitness Cost of Escape Mutations in p24 Gag in Association with Control of Human Immunodeficiency Virus Type 1 , 2006, Journal of Virology.

[89]  D. Burton,et al.  GP120: target for neutralizing HIV-1 antibodies. , 2006, Annual review of immunology.

[90]  P. Palese,et al.  Making Better Influenza Virus Vaccines? , 2006, Emerging infectious diseases.

[91]  Yang Liu,et al.  Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Lynn Morris,et al.  Recommendations for the Design and Use of Standard Virus Panels To Assess Neutralizing Antibody Responses Elicited by Candidate Human Immunodeficiency Virus Type 1 Vaccines , 2005, Journal of Virology.

[93]  A. Trkola,et al.  Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies , 2005, Nature Medicine.

[94]  Peter D. Kwong,et al.  Antigenic conservation and immunogenicity of the HIV coreceptor binding site , 2005, The Journal of experimental medicine.

[95]  Michael G Hudgens,et al.  Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. , 2005, The Journal of infectious diseases.

[96]  Don C. Wiley,et al.  Structure of an unliganded simian immunodeficiency virus gp120 core , 2005, Nature.

[97]  Renate Kunert,et al.  Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. , 2005, Immunity.

[98]  H. Katinger,et al.  Anti-Human Immunodeficiency Virus Type 1 (HIV-1) Antibodies 2F5 and 4E10 Require Surprisingly Few Crucial Residues in the Membrane-Proximal External Region of Glycoprotein gp41 To Neutralize HIV-1 , 2005, Journal of Virology.

[99]  Bette Korber,et al.  Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. , 2004, Glycobiology.

[100]  Renate Kunert,et al.  Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies , 2004, Journal of Virology.

[101]  S. Zolla-Pazner,et al.  The cross-clade neutralizing activity of a human monoclonal antibody is determined by the GPGR V3 motif of HIV type 1. , 2004, AIDS research and human retroviruses.

[102]  Peter D. Kwong,et al.  Structure and Mechanistic Analysis of the Anti-Human Immunodeficiency Virus Type 1 Antibody 2F5 in Complex with Its gp41 Epitope , 2004, Journal of Virology.

[103]  M. Hersberger,et al.  Deliberate removal of T cell help improves virus-neutralizing antibody production , 2004, Nature Immunology.

[104]  R. Koup,et al.  Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know , 2004, Nature Medicine.

[105]  N. Letvin,et al.  HIV escape from cytotoxic T lymphocytes: a potential hurdle for vaccines? , 2004, The Lancet.

[106]  H. Schuitemaker,et al.  Increased Sensitivity to CD4 Binding Site-Directed Neutralization following In Vitro Propagation on Primary Lymphocytes of a Neutralization-Resistant Human Immunodeficiency Virus IIIB Strain Isolated from an Accidentally Infected Laboratory Worker , 2004, Journal of Virology.

[107]  S. Zolla-Pazner,et al.  The V1/V2 Domain of gp120 Is a Global Regulator of the Sensitivity of Primary Human Immunodeficiency Virus Type 1 Isolates to Neutralization by Antibodies Commonly Induced upon Infection , 2004, Journal of Virology.

[108]  J. Chermann,et al.  Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). 1983. , 2004, Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion.

[109]  Wayne C Koff,et al.  HIV vaccine design and the neutralizing antibody problem , 2004, Nature Immunology.

[110]  David Cornforth,et al.  Development of the antibody response in acute HIV-1 infection , 2004, AIDS.

[111]  G. Moyle,et al.  The clades of HIV: their origins and clinical significance. , 2003, AIDS reviews.

[112]  Christoph Grundner,et al.  Access of Antibody Molecules to the Conserved Coreceptor Binding Site on Glycoprotein gp120 Is Sterically Restricted on Primary Human Immunodeficiency Virus Type 1 , 2003, Journal of Virology.

[113]  G. Scott,et al.  A longitudinal assessment of autologous neutralizing antibodies in children perinatally infected with human immunodeficiency virus type 1. , 2003, Virology.

[114]  Martin A. Nowak,et al.  Antibody neutralization and escape by HIV-1 , 2003, Nature.

[115]  D. Richman,et al.  Rapid evolution of the neutralizing antibody response to HIV type 1 infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Dan Turner,et al.  Impact of clade diversity on HIV-1 virulence, antiretroviral drug sensitivity and drug resistance. , 2003, The Journal of antimicrobial chemotherapy.

[117]  D. Montefiori,et al.  Effect of Humoral Immune Responses on Controlling Viremia during Primary Infection of Rhesus Monkeys with Simian Immunodeficiency Virus , 2003, Journal of Virology.

[118]  Peter D. Kwong,et al.  HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites , 2002, Nature.

[119]  H. Katinger,et al.  The Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody 2G12 Recognizes a Cluster of α1→2 Mannose Residues on the Outer Face of gp120 , 2002, Journal of Virology.

[120]  Peter D. Kwong,et al.  The Mannose-Dependent Epitope for Neutralizing Antibody 2G12 on Human Immunodeficiency Virus Type 1 Glycoprotein gp120 , 2002, Journal of Virology.

[121]  Feng Gao,et al.  Diversity Considerations in HIV-1 Vaccine Selection , 2002, Science.

[122]  H. Katinger,et al.  A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. , 2001, AIDS research and human retroviruses.

[123]  C. Cheng‐Mayer,et al.  Antibody Protects Macaques against Vaginal Challenge with a Pathogenic R5 Simian/Human Immunodeficiency Virus at Serum Levels Giving Complete Neutralization In Vitro , 2001, Journal of Virology.

[124]  B. Korber,et al.  Evolutionary and immunological implications of contemporary HIV-1 variation. , 2001, British medical bulletin.

[125]  Garrett M. Morris,et al.  Crystal Structure of a Neutralizing Human IgG Against HIV-1: A Template for Vaccine Design , 2001, Science.

[126]  I. Braakman,et al.  Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. , 2001, Biochimie.

[127]  John P. Moore,et al.  Genetic Subtypes, Humoral Immunity, and Human Immunodeficiency Virus Type 1 Vaccine Development , 2001, Journal of Virology.

[128]  S. Hammer,et al.  Host Determinants in HIV Infection and Disease: Part 2: Genetic Factors and Implications for Antiretroviral Therapeutics* , 2001, Annals of Internal Medicine.

[129]  D. Montefiori,et al.  Polyvalent Envelope Glycoprotein Vaccine Elicits a Broader Neutralizing Antibody Response but Is Unable To Provide Sterilizing Protection against Heterologous Simian/Human Immunodeficiency Virus Infection in Pigtailed Macaques , 2001, Journal of Virology.

[130]  M. Malim,et al.  HIV-1 Sequence Variation Drift, Shift, and Attenuation , 2001, Cell.

[131]  C. Boucher,et al.  Implications of antiretroviral resistance on viral fitness , 2001, Current opinion in infectious diseases.

[132]  A. Lapedes,et al.  Timing the ancestor of the HIV-1 pandemic strains. , 2000, Science.

[133]  Christos J. Petropoulos,et al.  A Novel Phenotypic Drug Susceptibility Assay for Human Immunodeficiency Virus Type 1 , 2000, Antimicrobial Agents and Chemotherapy.

[134]  A. Jetzt,et al.  High Rate of Recombination throughout the Human Immunodeficiency Virus Type 1 Genome , 2000, Journal of Virology.

[135]  J. Mascola,et al.  Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies , 2000, Nature Medicine.

[136]  J. Margolick,et al.  Consistent Viral Evolutionary Changes Associated with the Progression of Human Immunodeficiency Virus Type 1 Infection , 1999, Journal of Virology.

[137]  A Muñoz,et al.  A longitudinal study of neutralizing antibodies and disease progression in HIV-1-infected subjects. , 1999, The Journal of infectious diseases.

[138]  J. Parry,et al.  Discrimination of Subtype B and Non-Subtype B Strains of Human Immunodeficiency Virus Type 1 by Serotyping: Correlation with Genotyping , 1999, Journal of Clinical Microbiology.

[139]  J. Mascola,et al.  Protection of Macaques against Pathogenic Simian/Human Immunodeficiency Virus 89.6PD by Passive Transfer of Neutralizing Antibodies , 1999, Journal of Virology.

[140]  N. Haigwood,et al.  Neutralizing antibody directed against the HIV–1 envelope glycoprotein can completely block HIV–1/SIV chimeric virus infections of macaque monkeys , 1999, Nature Medicine.

[141]  L. Stamatatos,et al.  An Envelope Modification That Renders a Primary, Neutralization-Resistant Clade B Human Immunodeficiency Virus Type 1 Isolate Highly Susceptible to Neutralization by Sera from Other Clades , 1998, Journal of Virology.

[142]  J. Sodroski,et al.  The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. , 1998, Science.

[143]  L. M. Mansky,et al.  Retrovirus mutation rates and their role in genetic variation. , 1998, The Journal of general virology.

[144]  Lawrence Corey,et al.  Biological and Virologic Characteristics of Primary HIV Infection , 1998, Annals of Internal Medicine.

[145]  J. Sodroski,et al.  Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein , 1997, Journal of virology.

[146]  S. Matsushita,et al.  The V1/V2 region of human immunodeficiency virus type 1 modulates the sensitivity to neutralization by soluble CD4 and cellular tropism. , 1997, AIDS research and human retroviruses.

[147]  J. Overbaugh,et al.  Specific N-linked and O-linked glycosylation modifications in the envelope V1 domain of simian immunodeficiency virus variants that evolve in the host alter recognition by neutralizing antibodies , 1997, Journal of virology.

[148]  J. Albert,et al.  Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype , 1997, Journal of virology.

[149]  H. Fleury,et al.  Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals , 1997, Journal of virology.

[150]  J. Lambert,et al.  Safety and Pharmacokinetics of Hyperimmune Anti-Human Immunodeficiency Virus (HIV) Immunoglobulin Administered to HIV-Infected Pregnant Women and Their Newborns , 1997 .

[151]  P. Kaleebu,et al.  Neutralization serotypes of human immunodeficiency virus type 1 field isolates are not predicted by genetic subtype. The WHO Network for HIV Isolation and Characterization , 1996, Journal of virology.

[152]  J. Mascola,et al.  Human immunodeficiency virus type 1 neutralizing antibody serotyping using serum pools and an infectivity reduction assay. , 1996, AIDS research and human retroviruses.

[153]  Groen,et al.  Multivariate analysis of human immunodeficiency virus type 1 neutralization data , 1996, Journal of virology.

[154]  Virginia Litwin,et al.  HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5 , 1996, Nature.

[155]  Stephen C. Peiper,et al.  Identification of a major co-receptor for primary isolates of HIV-1 , 1996, Nature.

[156]  J. Goedert,et al.  Influence of combinations of human major histocompatibility complex genes on the course of HIV–1 infection , 1996, Nature Medicine.

[157]  A. Perelson,et al.  HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time , 1996, Science.

[158]  J. Mascola,et al.  Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group. , 1996, The Journal of infectious diseases.

[159]  J. Moore,et al.  Quantitative analysis of serum neutralization of human immunodeficiency virus type 1 from subtypes A, B, C, D, E, F, and I: lack of direct correlation between neutralization serotypes and genetic subtypes and evidence for prevalent serum-dependent infectivity enhancement , 1996, Journal of virology.

[160]  A. Trkola,et al.  Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG , 1995, Journal of virology.

[161]  J. Sodroski,et al.  Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding , 1995, Journal of virology.

[162]  J. Coffin,et al.  HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy , 1995, Science.

[163]  C. Barbas,et al.  Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120 , 1995, Journal of virology.

[164]  D R Burton,et al.  Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. , 1994, Science.

[165]  Kees,et al.  Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. , 1994, The Journal of clinical investigation.

[166]  S. Zolla-Pazner,et al.  Neutralization of primary human immunodeficiency virus type 1 isolates by the broadly reactive anti-V3 monoclonal antibody, 447-52D , 1994, Journal of virology.

[167]  D. Cooper,et al.  Determinants of HIV disease progression among homosexual men registered in the Tricontinental Seroconverter Study. , 1994, American journal of epidemiology.

[168]  G Himmler,et al.  A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1 , 1993, Journal of virology.

[169]  J. Drake Rates of spontaneous mutation among RNA viruses. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[170]  H. Schuitemaker,et al.  Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population , 1992, Journal of virology.

[171]  M. Salimans,et al.  Rapid and simple method for purification of nucleic acids , 1990, Journal of clinical microbiology.

[172]  G. Groen,et al.  Detection and subtyping of HIV-1 isolates with a panel of characterized monoclonal antibodies to HIV p24gag. , 1989, Virology.

[173]  J. Goudsmit,et al.  Changes in sexual behaviour and the fall in incidence of HIV infection among homosexual men. , 1989, BMJ.

[174]  Hans Wolf,et al.  Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS , 1986, Cell.

[175]  J. Levy,et al.  Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. , 1984, Science.

[176]  B. Haynes,et al.  Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. , 1984, Science.

[177]  M. Gottlieb,et al.  Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. , 1981, The New England journal of medicine.

[178]  B. Korber,et al.  Broadly Reactive Monoclonal Antibodies to Multiple HIV-1 Subtype and SIVcpz Envelope Glycoproteins , 2009 .

[179]  J. Baeten,et al.  HIV-1 neutralizing antibody breadth is affected by factors early in infection, but does not influence disease progression. Journal of Virology 83(10):10269-74 , 2009 .

[180]  F. McCutchan,et al.  Understanding the genetic diversity of HIV-1. , 2000, AIDS.

[181]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[182]  B. Preston,et al.  Mechanisms of retroviral mutation. , 1996, Trends in microbiology.