The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum

We report one of the most accurate measurements of the three-dimensional large-scale galaxy power spectrum achieved to date, using 56 159 redshifts of bright emission-line galaxies at effective redshift z ≈ 0.6 from the WiggleZ Dark Energy Survey at the Anglo-Australian Telescope. We describe in detail how we construct the survey selection function allowing for the varying target completeness and redshift completeness. We measure the total power with an accuracy of approximately 5 per cent in wavenumber bands of Δk= 0.01 h Mpc^(−1). A model power spectrum including non-linear corrections, combined with a linear galaxy bias factor and a simple model for redshift-space distortions, provides a good fit to our data for scales k < 0.4 h Mpc^(−1). The large-scale shape of the power spectrum is consistent with the best-fitting matter and baryon densities determined by observations of the cosmic microwave background radiation. By splitting the power spectrum measurement as a function of tangential and radial wavenumbers, we delineate the characteristic imprint of peculiar velocities. We use these to determine the growth rate of structure as a function of redshift in the range 0.4 < z < 0.8, including a data point at z= 0.78 with an accuracy of 20 per cent. Our growth rate measurements are a close match to the self-consistent prediction of the Λ cold dark matter model. The WiggleZ survey data will allow a wide range of investigations into the cosmological model, cosmic expansion and growth history, topology of cosmic structure and Gaussianity of the initial conditions. Our calculation of the survey selection function will be released at a future date via our website wigglez.swin.edu.au.

[1]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[2]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[3]  S. Arnouts,et al.  Number Counts of GALEX Sources in Far-Ultraviolet (1530 Å) and Near-Ultraviolet (2310 Å) Bands , 2004, astro-ph/0411317.

[4]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[5]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[6]  Yong-Seon Song,et al.  Reconstructing the history of structure formation using redshift distortions , 2008, 0807.0810.

[7]  The 2dF QSO Redshift Survey - IV. The QSO Power Spectrum from the 10k Catalogue , 2001, astro-ph/0102163.

[8]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: the nature of the relative bias between galaxies of different spectral type , 2005 .

[9]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[10]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[11]  S Cole,et al.  New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey. , 2002, Physical review letters.

[12]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[13]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[14]  The Lyman-alpha Forest Power Spectrum from the Sloan Digital Sky Survey , 2004, astro-ph/0405013.

[15]  Topology of large-scale structure in the 2dF Galaxy Redshift Survey , 2006, astro-ph/0611244.

[16]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[17]  W. Percival,et al.  Scale‐dependent galaxy bias in the Sloan Digital Sky Survey as a function of luminosity and colour , 2008, 0808.1101.

[18]  R. Nichol,et al.  Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts , 2004, astro-ph/0401249.

[19]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[20]  The 2dF QSO Redshift Survey — XI. The QSO power spectrum , 2003, astro-ph/0302280.

[21]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[22]  D. P. Schneider,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2005 .

[23]  Power spectrum of the SDSS luminous red galaxies: constraints on cosmological parameters , 2006, astro-ph/0604129.

[24]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[25]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[26]  Alexander S. Szalay,et al.  Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .

[27]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[28]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[29]  Eric V. Linder,et al.  Cosmic structure and dark energy , 2003 .

[30]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[31]  Max Tegmark,et al.  Observational evidence for stochastic biasing , 1999 .

[32]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[33]  Karl Glazebrook,et al.  The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations , 2005 .

[34]  Scott Burles,et al.  Toward a Precise Measurement of Matter Clustering: Lyα Forest Data at Redshifts 2-4 , 2000 .

[35]  A. Mazure,et al.  A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.

[36]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[37]  J. Brinkmann,et al.  The Linear Theory Power Spectrum from the Lyα Forest in the Sloan Digital Sky Survey , 2004, astro-ph/0407377.

[38]  J. Fry,et al.  Skewness in large-scale structure and non-Gaussian initial conditions , 1994 .

[39]  Patrick McDonald Dark matter clustering: a simple renormalization group approach , 2007 .

[40]  Martin White,et al.  Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.

[41]  A. Hamilton Formulae for growth factors in expanding universes containing matter and a cosmological constant , 2000, astro-ph/0006089.

[42]  Eiichiro Komatsu,et al.  Perturbation Theory Reloaded: Analytical Calculation of Nonlinearity in Baryonic Oscillations in the Real-Space Matter Power Spectrum , 2006 .

[43]  Bispectrum and Nonlinear Biasing of Galaxies: Perturbation Analysis, Numerical Simulation, and SDSS Galaxy Clustering , 2006, astro-ph/0609740.

[44]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[45]  Scale Dependence of Halo and Galaxy Bias: Effects in Real Space , 2006, astro-ph/0609547.

[46]  The build-up of haloes within Press–Schechter theory , 2001, astro-ph/0107437.

[47]  R. Ellis,et al.  Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.

[48]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[49]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[50]  W. Percival Cosmological structure formation in a homogeneous dark energy background , 2005, astro-ph/0508156.

[51]  A. Connolly,et al.  CLUSTERING OF LOW-REDSHIFT (z ⩽ 2.2) QUASARS FROM THE SLOAN DIGITAL SKY SURVEY , 2008, 0903.3230.

[52]  Andrew J. Connolly,et al.  The shape of the SDSS DR5 galaxy power spectrum , 2006 .

[53]  Robert C. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[54]  S. Brough,et al.  The WiggleZ Dark Energy Survey: small-scale clustering of Lyman-break galaxies at z < 1 , 2009, 0901.2587.

[55]  D. Eisenstein,et al.  Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.

[56]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[57]  D. Heath The growth of density perturbations in zero pressure Friedmann–Lemaître universes , 1977 .

[58]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[59]  J. Gott,et al.  The Sponge-like Topology of Large-Scale Structure in the Universe , 1986 .

[60]  Durham,et al.  The galaxy power spectrum: precision cosmology from large-scale structure? , 2007, 0708.1517.

[61]  Alexander S. Szalay,et al.  The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum , 2007 .

[62]  The Dynamics of Poor Systems of Galaxies , 1999, astro-ph/9901095.

[63]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[64]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[65]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[66]  C. Blake,et al.  Measuring the cosmic evolution of dark energy with baryonic oscillations in the galaxy power spectrum , 2005, astro-ph/0505608.

[67]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[68]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[69]  Sarah Bridle,et al.  Cosmology with photometric redshift surveys , 2004 .

[70]  Power spectrum analysis of the Stromlo—APM redshift survey , 1996, astro-ph/9603016.

[71]  W. Percival,et al.  Forecasting cosmological constraints from redshift surveys , 2008, 0810.1518.

[72]  E. Komatsu,et al.  The bispectrum of galaxies from high-redshift galaxy surveys: Primordial non-Gaussianity and non-linear galaxy bias , 2007, 0705.0343.

[73]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[74]  O. Lahav,et al.  Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts , 2007, 0704.3377.

[75]  Yun Wang Differentiating dark energy and modified gravity with galaxy redshift surveys , 2007, 0710.3885.

[76]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[77]  Y. P. Jing Correcting for the Alias Effect When Measuring the Power Spectrum Using a Fast Fourier Transform , 2004 .